**Copernicus POD Service COPERNICUS SENTINEL-6** POD

Sentinel-6 Validation Team 2022 11 July 2022



© 2022 GMV Property - All rights reserved



# Agenda

- **1.** Sentinel-6A @ Copernicus POD Service
- 2. Calibration and characterization activities
- 3. Conclusions from CPOD QWG 11 (June 2022)

# S-6A @ CPOD SERVICE

### Operational products

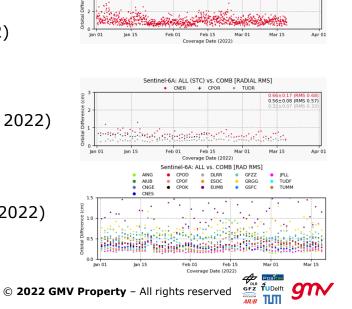
- Restituted orbits in near-real time (GPS only):
  - <u>Timeliness</u> (Req. / mean Q1 2022): 10 / 5.8 min
  - <u>Accuracy</u> (radial; vs. COMB; Req. / mean Q1 2022): 30 / 9.5 mm

### Non-operational products

- NRT orbits (GAL only). Accuracy (radial; vs. CNES POE; Q1 2022)
  - GPS only: 10.0 mm
  - GAL only: **9.5 mm**
- STC orbits (GPS+GAL): 5.6 mm (mean of radial RMS; mean Q1 2022)

– NTC orbits (GAL only): **3.8 mm** (mean of radial RMS; mean Q1 2022)




Feb 15

Sentinel-6: ROE\_AX vs. COMB [RADIAL RMS] Sentinel-6A

Mar 01

Mar 15

lan 15

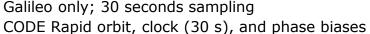


### Copernicus Sentinel-6 POD (S6VT-22)

### **Configuration**:

- POD SW:
- Observations:
- GNSS products:
- Determination arc: ٠
- COST-G 2112 Gravity field model:
- Ambiguity fixed solutions
- Estimated orbital parameters (**step #1**)
  - State-vector, CD, CR
- Estimated orbital parameters (**step #2**) ٠
  - State-vector
  - $\succ$  CD = 1.0 fixed (almost no drag!)
  - $\succ$  CR = fixed to different values depending on configuration

| Solution | Current | Update | Upd1  | Upd2  | CNES |
|----------|---------|--------|-------|-------|------|
| CR       | 1.0     | 0.89   | 0.901 | 0.967 | 0.98 |


NAPEOS

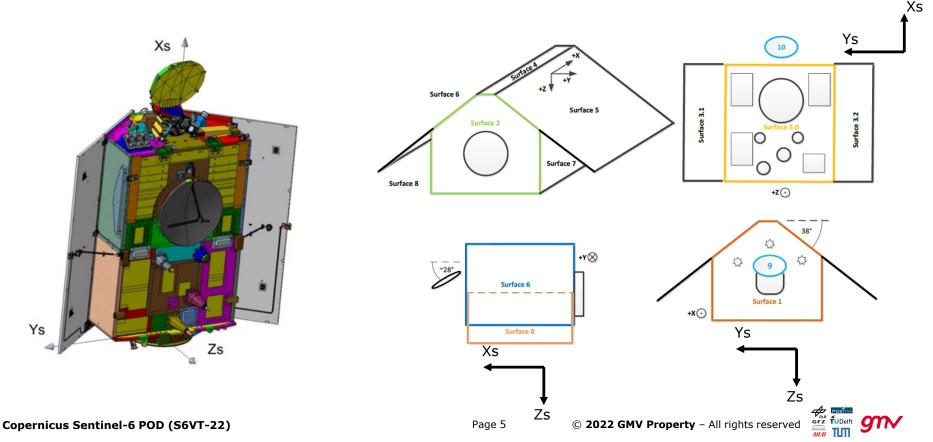
24 hours

> CPR (constant per revolution): 6 empirical parameter sets consisting of:

**CAL/VAL ACTIVITIES @ CPOD SERVICE** 

- Along-track constant, sine and cosine
- Cross-track constant, sine and cosine







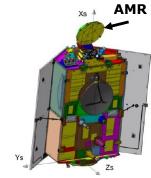





# CAL/VAL ACTIVITIES @ CPOD SERVICE MACRO-MODEL CONFIGURATION



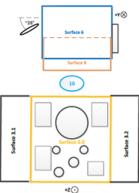
COPERNICUS


opernicus

esa

# **MACRO-MODEL CONFIGURATION**

| Sol ID                                                                             | POD<br>Context | # Panels                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current                                                                            | 1.4            | <ul> <li>10 panels, but two of them are set to zero</li> <li>± Y areas: 1.03 m<sup>2</sup> (shaded by solar panels)</li> <li>+ Z area: a plate covering the entire bottom of the satellite from one solar panel to the other =&gt; empty space below the solar panels is ignored</li> <li>AMR: set to zero</li> </ul> |
| Update                                                                             | 2.0            | <ul> <li>12 panels, inner sides of solar panels are added</li> <li>± Y areas: 1.03 m<sup>2</sup> (shaded by solar panels)</li> <li>+ Z: much smaller, because empty space is <u>not</u> ignored -&gt; 2 additional panels</li> </ul>                                                                                  |
| Upd1 2.0 <b>AMR:</b> direction to Earth set to zero (shadowed from satellite body) |                | AMR: direction to Earth set to zero (shadowed from satellite body)                                                                                                                                                                                                                                                    |
| Upd2                                                                               | 2.0            | <ul> <li>AMR: direction to Earth set to zero (shadowed from satellite body)</li> <li>+ Z: deactivation of inner solar panels for SRP; Earth albedo and IR still considered</li> </ul>                                                                                                                                 |
| CNES 2.0 <b>6</b> panels<br>Updated properties for VI/IR                           |                |                                                                                                                                                                                                                                                                                                                       |






opernicus

esa

COPERNICUS



© 2022 GMV Property - All rights reserved

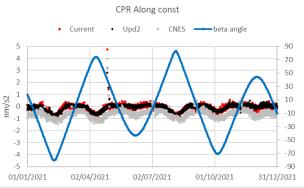


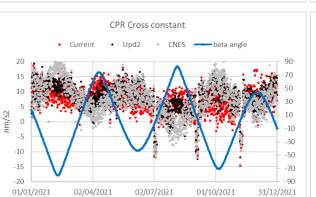
# COPERNICUS **CAL/VAL ACTIVITIES @ CPOD SERVICE STEP 1 – CD, CR, CP RES**

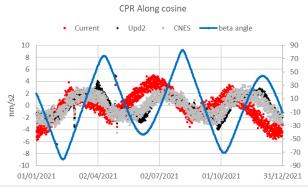


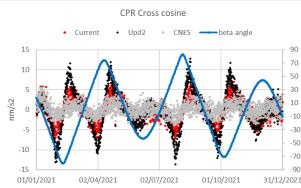
opernicus

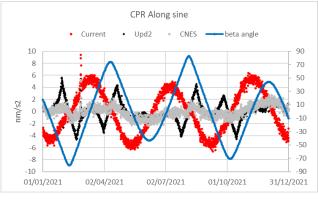
CD

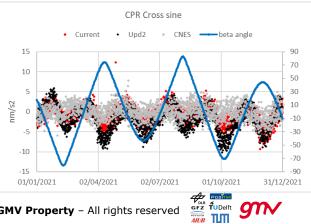

CR


### Phase residuals 1.15 12 20 current current update 2 update 2 18 10 1.1 atmosphere drag scale factor radiation pressure coefficient update 3 update 3 carrier phase RMS (mm) 8 1.05 CNES 16 6 0.95 4 0.9 2 0.85 0 6 update 2 -2 0.8 update 3 4 CNES 0.75 -4 50 350 300 350 200 250 350 Ω 200 250 300 0 200 250 Ω 50 150 300 Day of Year 2021 Day of Year 2021 Day of Year 2021


Step#1: Estimate CD, CR without empiricals, to derive the mean of CR (days 113-194):

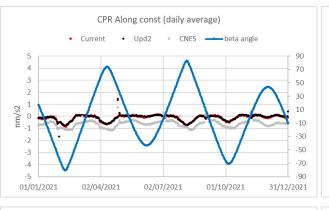

| Solution | Current | Update | Upd1  | Upd2  | CNES |
|----------|---------|--------|-------|-------|------|
| CR       | 1.0     | 0.89   | 0.901 | 0.967 | 0.98 |

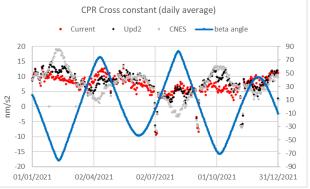

### COPERNICUS **CAL/VAL ACTIVITIES @ CPOD SERVICE** opernici STEP 2 – CPRs New

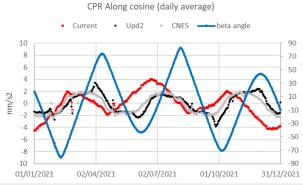


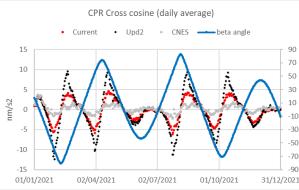


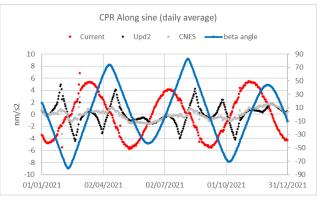


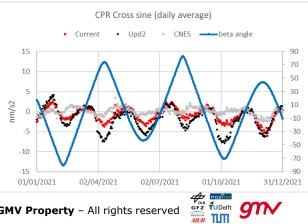



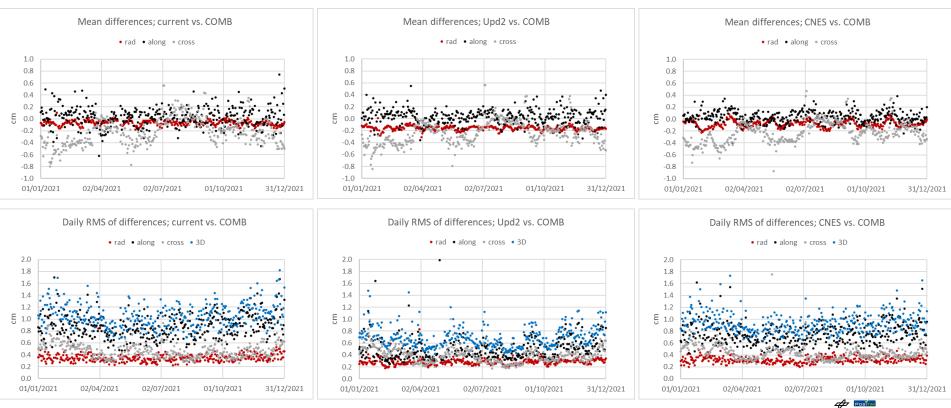


Copernicus Sentinel-6 POD (S6VT-22)


## **CAL/VAL ACTIVITIES @ CPOD SERVICE** COPERNICUS STEP 2 – CPRs (daily averages)









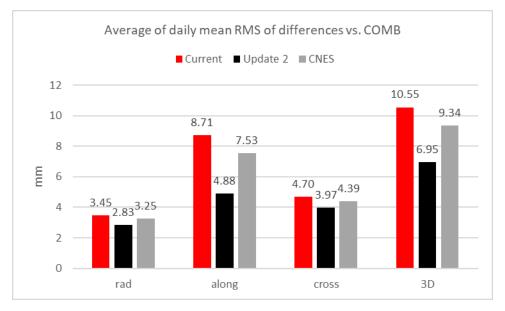

opernici



Copernicus Sentinel-6 POD (S6VT-22)



Copernicus Sentinel-6 POD (S6VT-22)


Page 10

opernic

GFZ TUDelft

### **COMPARISONS VS. RSR#23**

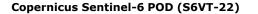
| mm       | Rad  | along | cross | 3D    |
|----------|------|-------|-------|-------|
| Current  | 3.45 | 8.71  | 4.70  | 10.55 |
| Update 2 | 2.83 | 4.88  | 3.97  | 6.95  |
| CNES     | 3.25 | 7.53  | 4.39  | 9.34  |



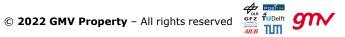
Copernicus Sentinel-6 POD (S6VT-22)

Page 11




operr




|         | Mean (mm) | RMS (mm) |  |
|---------|-----------|----------|--|
| Current | 2.0       | 8.9      |  |
| Update2 | 1.2       | 8.8      |  |
| CNES    | ТВС       | TBC      |  |

Page 12

- 12 selected stations, no range biases or station coordinate corrections estimated
- SLR validation gives preference to **Update2** solution because of the lower mean



- Update of S-6 satellite macro model shows improvements but also deteriorations in the POD(-related) results.
- Shadowing effects have to be considered.
- Fine-tuning of the macro model is on-going.
- No final conclusion which macro model should be used for the further processing.



# **CONCLUSIONS FROM CPOD QWG #11**



- From DLR analysis (ref. 12\_QWG11\_DLR\_Sentinel-6A TRIG-PODRIX Cross Calibration):
  - There is a difference of 14 mm between the TRIG and PODRIX, in the Y-direction. Most probably due to a wrongly calibrated location of the antennas
    - Get TRIG antenna calibration; Better characterization the satellite before launch.
  - There is a difference of 9 mm between the TRIG and PORDIX in the X-direction. Most probably it is due to a time-tag error in one, or both systems. SLR analysis suggest it is dominated by TRIG
    - Verify TRIG-PODRIX timing discrepancy in signal simulator.
- From CNES analysis (ref. 19\_QWG11\_CNES\_Sentinel-6 Solar radiation pressure model)
  - New macro-model behaves better than the pre-flight model
  - Still, improvements are needed for:
    - better modelling of the solar array energy exchanges (external panels)
    - how to handle the +-y cavities in a simple model



# Thank you

## **Copernicus POD Service**

Jaime Fernández (GMV) Heike Peter (POSITIM) Marc Fernández (GMV) Pierre Féménias (ESA/ESRIN) Carolina Nogueira (EUMETSAT) Francisco Sáncho (EUMETSAT) © 2022 GMV Property - All rights reserved

