Copernicus POD Service Copernicus Sentinel-3 POD with COST-G

Presenter: Jaime Fernández (GMV) H. Peter (POSITIM), U. Meyer (AIUB) P. Féménias (ESA/ESRIN), C. Nogueira (EUMETSAT)

7th Sentinel-3 Validation Team Meeting, ESRIN, Italy 18-20 October 2022

© 2022 GMV Property - All rights reserved

Agenda

- **1. Introduction**
- 2. Reprocessing
- 3. Results
- 4. Next Steps and Conclusions

INTRODUCTION WHAT IS COST-G?

COST-G: Combination Service for Time-variable Gravity Models

Improved and consolidated product integrating the strengths of all ACs

Copernicus Sentinel-3 POD with COST-G

Page 4

GRACE-FO OPERATIONAL COMBINED MONTHLY GRAVITY FIELDS

Flawless and uninterrupted operational combination with a latency < 3 months.

End of GRACE, beginning of GRACE-FO

WEIGHTED COMBINATION AND VALIDATION OF THE COMBINED SOLUTION

Combination outperforms all individual solutions in 2021

COST-G

For background information on COST-G and links to products check at: <u>https://cost-g.org</u>

Welcome to COST-G

The International Combination Service for Time-variable Gravity Fields (COST-G) is a product center of the International Gravity Field Service (IGFS) and is dedicated to the combination of monthly global gravity field models. COST-G stems from the activities of the former H2020 project European Gravity Service for Improved Emergency Management (EGSIEM) and is further developed within the follow-up project Global Gravity-Based Groundwater Product (G3P), which is funded from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 870353 (funding period 2020-2022).

Please use the top menu to visit the various parts of our website!

Best regards, Your COST-G Team.

Latest News

April 14th 2022

We have a new publication online: <u>COST-G gravity field</u> <u>models for precise</u> <u>orbit determination of</u> <u>Low Earth Orbiting</u> <u>Satellites.</u>

December 17th 2021

Precise orbit determination (POD) of Low Earth Orbiters (LEOs) depends on the precise knowledge of the Earth's gravity field Peter H, Meyer U, Lasser M, Jäggi A (2022): *COST-G gravity field models for precise orbit determination of Low Earth Orbiting Satellites.* Advances in Space Research (69), **12**, 4155-4168. doi: 10.1016/j.asr.2022.04.005

Page 7

Copernicus Sentinel-3 POD with COST-G

Page 8

© 2022 GMV Property - All rights reserved

INTRODUCTION **EFFECT OF NEW MODEL**

0.14

COPERNICUS opernicus esa

Operational precise orbit determination (POD) of Low Earth Orbiters (LEO) relies on a Earth gravity model including time-variable gravity (TVG).

The EIGEN-GRGS-RL04 model (green) has been the standard for LEO-POD of altimeter satellites, but the extrapolation to the GRACE-FO period reveals large prediction errors.

For comparison, a model fitted to COST-G GRACE-FO gravity fields is shown (red).

INTRODUCTION POLAR MASS TREND (NO FILTER)

Surprisingly, the reason for the prediction error in the EIGEN-GRGS-RL04 model (green) seems not to be in regions with strong mass trends.

HYDROLOGICAL CYCLE IN LARGE RIVER BASINS (300 KM GAUSS)

The time-series of monthly GRACE gravity field solutions was fitted in yearly batches for the EIGEN-GRGS-RL04 model.

COPERNICUS

Service

opernicus

While the fit in the GRACE period is very good, the **extrapolation of the last of these batches leads to large errors in river basins** with strong non-seasonal variations.

© 2022 GMV Property – All rights reserved

REPROCESSING

REPROCESSING

INTRODUCTION

- Initial assessment of the impact of using COST-G in the CPOD Service
 - > Impact on accuracy
 - > Impact on empirical accelerations
- Latest Regular Service Reviews (RSR) have showed that it provides one of the best solutions

Reprocessing is limited to the time limits of the COST-G geopotential, currently from 2018 onwards. For the moment it is not possible to do a complete reprocessing covering years prior to 2018.

Page 12

Earth radiation

Radiation pressure model

Atmospheric density model msise00

SENTINEL-3 POD MODELLING			
	Model	Value	
	EOPs	IERS rapid / finals	
	Reference System	IERS standards	
	Gravity field	EIGEN: EIGEN.GRGS.RL04 TVG COST-G: COSTG _2206	
	Solid tides	IERS 2010	
	Ocean tides	FES 2014	
	Atmospheric gravity	GFZ AOD L1B RL06	
	Earth / Ocean pole tides	IERS 2010	

Box-wing

Albedo and infra-red applied

REPROCESSING

Parameter	Value
Arc length	5+24+3 h (32h)
Drag coefficient	1 (estimated)
Solar pressure coeff.	1 (fixed)
1/rev empiricals (estimated)	16 sets per arc in: along cnt+sin+cos cross cnt+sin+cos
GNSS sampling	10 sec
GNSS products	CODE Repro (<2020) CODE Rapid (> 2020)
GNSS Clocks rate	5 sec (<2020) 30 sec (>2020)
Receiver ambiguities	Fixed
Manoeuvres	Estimated

SENTINEL-3A PROCESSING METRICS

Sentinel-3: Daily Average Number of Tracked GPS Satellites Sentinel-3A Sentinel-3B Copernicus r,3±0.07 (RMS 7.75) r,3±0.07 (RMS 7.7

SENTINEL-3B PROCESSING METRICS

Sentinel-3: Daily Average Number of Tracked GPS Satellites Sentinel-3A Sentinel-3B Copernicus particular and the sentinel-3B Copernicus Sentinel-3B Copernicus

SENTINEL-3A CONSTANT PER REVOLUTION

Copernicus Sentinel-3 POD with COST-G

Page 18

© 2022 GMV Property - All rights reserved

SENTINEL-3B CONSTANT PER REVOLUTION

Copernicus Sentinel-3 POD with COST-G

Page 19

SENTINEL-3A DIFFERENCES VS. COMB

Copernicus Sentinel-3 POD with COST-G

Page 20

SENTINEL-3B DIFFERENCES VS. COMB

Copernicus Sentinel-3 POD with COST-G

Page 21

© 2022 GMV Property - All rights reserved

SENTINEL-3 SLR RESIDUALS – WITHOUT REMOVING STATION BIASES

Copernicus Sentinel-3 POD with COST-G

Page 22

© 2022 GMV Property – All rights reserved

COPERNICUS

Service

operr

GFZ TUDelft

CONCLUSIONS and NEXT STEPS

CONCLUSIONS AND NEXT STEPS

- The use of COST-G showed:
 - > An increasing improvement on the accuracy (measured as differences vs. COMB) from 2020 onwards.
 - > A reduction in the dispersion of CPR empiricals.
- Next steps are:
- 1. To complete the offline reprocessing:
 - > Compute missing days
 - > Refine SLR analysis removing station biases
- 2. To extend the reprocessing before 2018
 - Subject to the generation of an extended COST-G (on-going activity)
- 3. To compile a memorandum to distribute within the CPOD QWG to justify the use of COST-G in CPOD.

Thank you

Copernicus POD Service

Jaime Fernández (GMV)

Heike Peter (POSITIM) Ulrich Meyer (AIUB) Pierre Féménias (ESA/ESRIN) Carolina Nogueira Loddo (EUMETSAT)

