COPERNICUS POD SERVICE

GLOBAL MONITORING FOR ENVIRONMENT AND SECURITY

COPERNICUS POD SERVICE REPROCESSING OF THE COPERNICUS SENTINEL-1,-2,-3 ORBITS

EGU 2019, 8 – 12 April; Vienna, Austria

Emilio J. Calero⁽¹⁾

Jaime Fernández ⁽¹⁾

Heike Peter ⁽²⁾

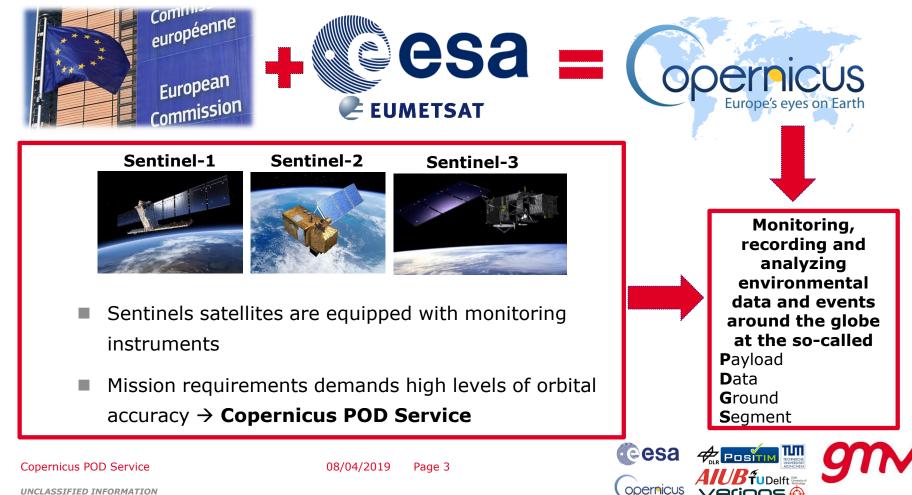
Pierre Féménias (3)

 ⁽¹⁾ GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain
 ⁽²⁾ PosiTim UG, In den Löser 15, 64342 Seeheim-Jugenheim, Germany
 ⁽³⁾ ESA/ESRIN, Via Galileo Galilei, I-00044

Frascati, Italy

Copernicus POD Service

AGENDA


Overview of Copernicus POD Service

- Reprocessing campaign
 - Ambiguity-fixing techniques
 - GPS orbits and clocks in ITRF14/IGS14
- Results

Conclusions

OVERVIEW OF CPOD SERVICE

veripos 🔶

UNCLASSIFIED INFORMATION

REPROCESSING

- During the lifetime of the CPOD Service (~6 years), the orbital models, the geodetic standards and the POD techniques evolve
- Using the latest state-of-the-art techniques, consistent and improved orbit time series are generated
- Two reprocessing have been done in the frame of this activity
 - POD processing with integer ambiguity resolution
 - POD processing with consistent GPS products aligned to ITRF14/IGS14
- Corrected ARP location for Sentinel-1A and -1B has been used during the reprocessing

	New ARP (mm)	Operational ARP (mm)	∆ ARP (mm)
X	-937.1	-976.2	39.1
Y	332.1	286.9	45.2
Z	131.0	124.1	6.9

This is not an official reprocessing requested by ESA or others

REPROCESSING – AMBIGUITY FIXING

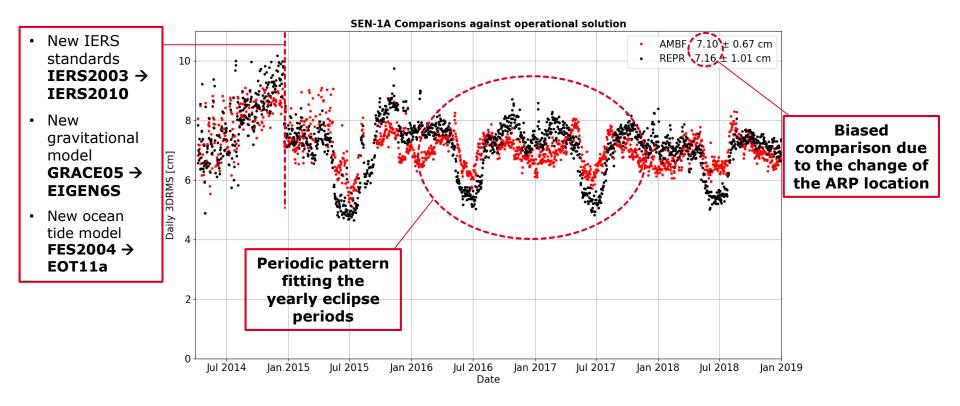
- This reprocessing is characterized by the usage of ambiguity fixing algorithms during the POD processing → PCO/PCV maps are recalibrated using this new configuration
- PCO/PCV maps remove the offset between the antenna reference point (ARP) and the antenna phase centre
 - PCO (Phase Centre Offset) accounts for a systematic bias
 - PCV (Phase Centre Variations) maps account for the azimuth/elevation variations
- New PCO/PCV values have been estimated processing one year of data (2017/12/01 - 2018/11/30)
 - The PCO is estimated during the determination process
 - The PCV maps are generated from the assessment of the phase residuals

Copernicus POD Service

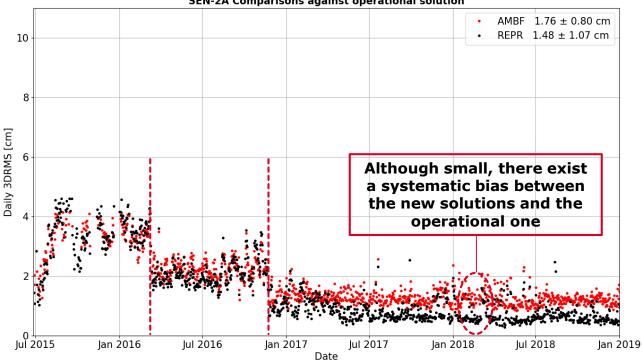
REPROCESSING – REPROCESSED GPS ORBIT AND CLOCK PRODUCTS

IGS orbit & clock final products switched from ITRF08 to ITRF14 on 2017/01/29

- It yields inconsistencies
- Reprocessed GPS orbit & clock products at POSITIM
 - Whole time series of GPS orbits/clocks consistently aligned to ITRF14/IGS14
 - 36-hour coverage (vs. 24-hour coverage of IGS Final products) → tailored to the NTC products determination arc
- Operational PCO/PCVs maps have been used, except for S-1, which uses the generated during the Ambiguity Fixing Reprocessing (to be consistent with the ARP)


RESULTS

- Three solutions are considered:
 - **OPER**: Operational solution
 - **AMBF**: Solution generated within the Ambiguity Fixing reprocessing
 - **REPR**: Solution generated with the reprocessed GPS products


RESULTS – VS OPERATIONAL ORBIT (I)

RESULTS – VS OPERATIONAL ORBIT (II)

SEN-2A Comparisons against operational solution

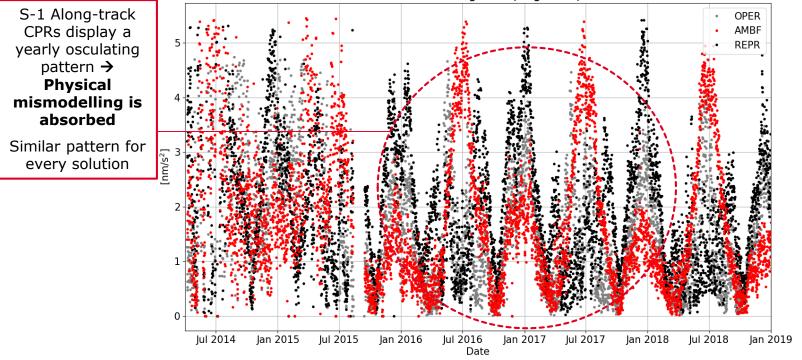
Copernicus POD Service

RESULTS – VS OPERATIONAL ORBIT (III)

SEN-3A Comparisons against operational solution

Copernicus POD Service

RESULTS – OVERLAPS


1-POINT 3DRMS OVERLAPS [cm]				
	OPER	AMBF	REPR	
	mean ± StD	mean ± StD	mean ± StD	
S-1A	0.70 ± 0.37	1.12 ± 0.58	0.68 ± 0.32	
S-1B	0.79 ± 0.39	0.99 ± 0.46	0.67 ± 0.31	
S-2A	0.85 ± 0.49	0.91 ± 0.47	0.67 ± 0.33	
S-2B	0.64 ± 0.31	0.84 ± 0.43	0.61 ± 0.29	
S-3A	1.10 ± 0.55	0.77 ± 0.38	1.14 ± 0.58	
S-3B	1.06 ± 0.48	0.72 ± 0.33	1.20 ± 0.60	

- The REPR solution performs better than the others for S-1 and S-2, being the AMBF solution the worst one in those cases
- For S-3, the AMBF solution shows the highest levels of consistency
 The rate of the S-3 measurements is consistent with the GPS clocks

Copernicus POD Service

RESULTS – OTHER POD METRICS (I)

SEN-1A CPR Along-track (magnitude)

Copernicus POD Service

RESULTS – OTHER POD METRICS (II)

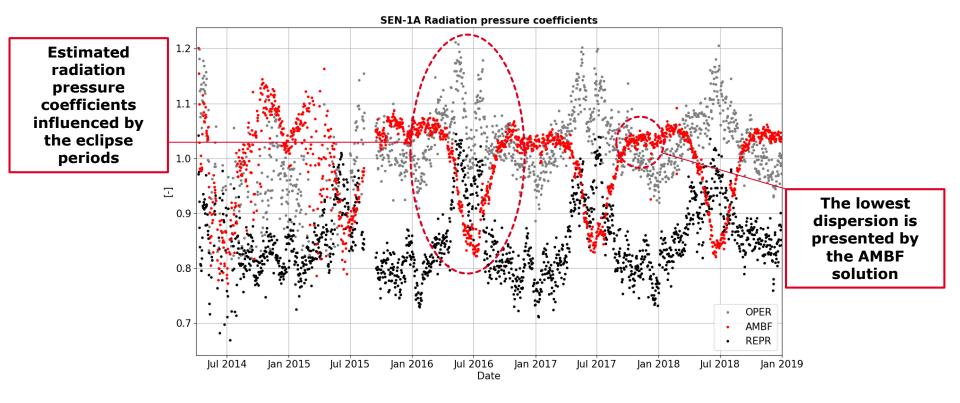
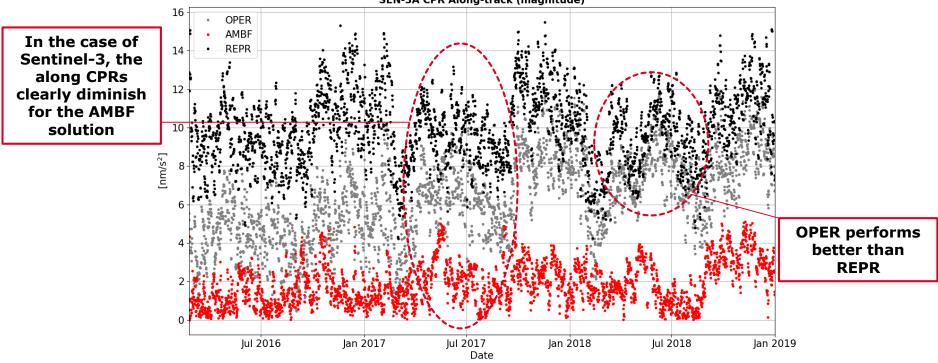
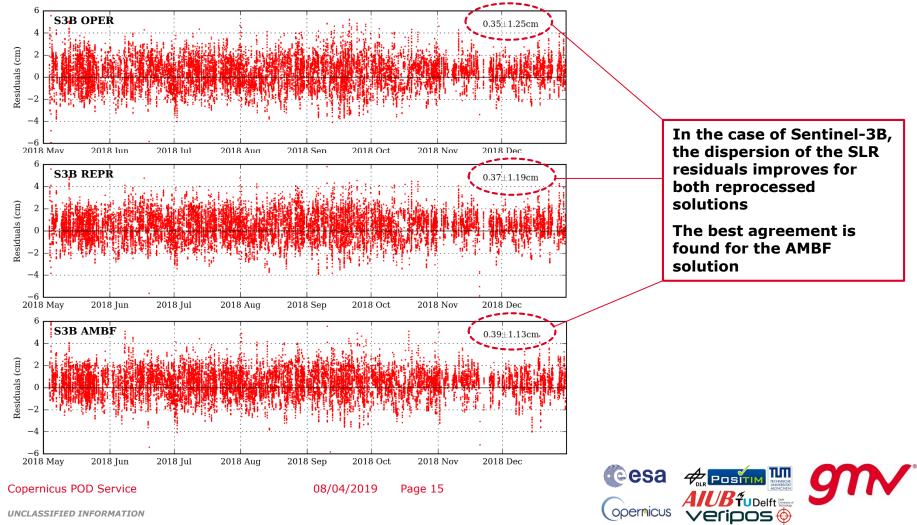



 Image: Copernicus
 Im

Copernicus POD Service

RESULTS – OTHER POD METRICS (III)



SEN-3A CPR Along-track (magnitude)

Copernicus POD Service

RESULTS – SLR VALIDATION

CONCLUSIONS

- The CPOD Service has carried out two reprocessing campaigns
 - (1) including integer ambiguity resolution
 - (2) consistent GPS products aligned to ITRF14/IGS14
- New PCO/PCVs maps have been generated as a former stage in the ambiguityfixing reprocessing
- Systematic biases have been found between the reprocessed orbits and the operational ones. Their causes are not still clear
- Some estimated parameters reveals an improvement for the ambiguity-fixing reprocessing
- An improved performance has been shown for S-3 by assessing the orbit overlaps as well as the SLR residuals
- Uncertainties in the results. Improvements are still required

Copernicus POD Service

08/04/2019 Page 16

UNCLASSIFIED INFORMATION

Thank you! Comments? Questions?

CPOD Team

