
## COPERNICUS SPACE COMPONENT SENTINEL OPTICAL IMAGING MISSION PERFORMANCE CLUSTER SERVICE

## **Data Quality Report**

**Sentinel-3 OLCI** 

October 2023



Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Contract: 4000136252/21/I-BG

| Customer:     | ESA                | Document Ref.: | OMPC.ACR.DQR.03.10-2023 |
|---------------|--------------------|----------------|-------------------------|
| Contract No.: | 4000136252/21/I-BG | Date:          | 10/11/2023              |
|               |                    | Issue:         | 1.0                     |

| Project:        | COPERNICUS SPACE COMPONE<br>PERFORMANCE CLUSTER SERVI                                   |                           | AL IMAGING MISSION                      |
|-----------------|-----------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|
| Title:          | Data Quality Report - OLCI                                                              |                           |                                         |
| Author(s):      | OLCI ESL team                                                                           |                           |                                         |
| Approved by:    | L. Bourg, OPT-MPC OLCI ESL<br>Coordinator  S. Clerc, OPT-MPC Optical ESL<br>Coordinator | Authorized by             | C. Hénocq, OPT-MPC S3 Technical Manager |
| Distribution:   | ESA, EUMETSAT, published in Sentinel Online                                             |                           |                                         |
| Accepted by ESA | S. Dransfeld, ESA TO                                                                    |                           |                                         |
| Filename        | OMPC.ACR.DQR.03.10-2023 - i                                                             | l<br>1r0 - OLCI DQR Octol | per 2023.docx                           |

### Disclaimer

The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency or the European Union.









## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: iii

## **Changes Log**

| Version | Date       | Changes       |
|---------|------------|---------------|
| 1.0     | 10/11/2023 | First version |
|         |            |               |
|         |            |               |
|         |            |               |

## **List of Changes**

| Version | Section | Answers to RID | Changes |
|---------|---------|----------------|---------|
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |
|         |         |                |         |



## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: iv

### **Table of content**

| T/ | ABLE OF CO | ONTENT                                                                                   | IV  |
|----|------------|------------------------------------------------------------------------------------------|-----|
| LI | ST OF FIGU | JRES                                                                                     | VI  |
| LI | ST OF TAB  | LES                                                                                      | XII |
| 1  | PROCE      | SSING BASELINE VERSION                                                                   | 1   |
|    | 1.1 S      | entinel3-A                                                                               | 1   |
|    | 1.2 S      | entinel3-B                                                                               | 1   |
| 2  | INSTRI     | JMENT MONITORING                                                                         | 2   |
| _  |            | CD temperatures                                                                          |     |
|    | 2.1.1      | OLCI-A                                                                                   |     |
|    | 2.1.1      | OLCI-B                                                                                   |     |
|    |            | adiometric Calibration                                                                   |     |
|    | 2.2.1      | Dark Offsets [OLCI-L1B-CV-230]                                                           |     |
|    | 2.2.3      | Instrument response and degradation modelling [OLCI-L1B-CV-250]                          |     |
|    | 2.2.4      | Ageing of nominal diffuser [OLCI-L1B-CV-240]                                             |     |
|    | 2.2.5      | Updating of calibration ADF [OLCI-L1B-CV-260]                                            |     |
|    | 2.3 S      | pectral Calibration [OLCI-L1B-CV-400]                                                    | 36  |
|    | 2.3.1      | OLCI-A                                                                                   | 36  |
|    | 2.3.2      | OLCI-B                                                                                   | 36  |
|    | 2.4 S      | ignal to Noise assessment [OLCI-L1B-CV-620]                                              | 37  |
|    | 2.4.1      | SNR from Radiometric calibration data                                                    | 37  |
|    | 2.5 G      | Geometric Calibration/Validation                                                         | 43  |
|    | 2.5.1      | OLCI-A                                                                                   | 43  |
|    | 2.5.2      | OLCI-B                                                                                   | 46  |
| 3  | OLCI LI    | EVEL 1 PRODUCT VALIDATION                                                                | 50  |
|    | 3.1 [0     | OLCI-L1B-CV-300], [OLCI-L1B-CV-310] – Radiometric Validation                             | 50  |
|    | 3.1.1      | S3ETRAC Service                                                                          | 50  |
|    | 3.1.2      | Radiometric validation with DIMITRI                                                      | 52  |
|    | 3.1.3      | Radiometric validation with OSCAR                                                        | 57  |
|    | 3.1.4      | Radiometric validation with Moon observations: LIME results                              | 61  |
| 4  | LEVEL ?    | 2 LAND PRODUCTS VALIDATION                                                               | 62  |
|    | 4.1 [0     | OLCI-L2LRF-CV-300]                                                                       | 62  |
|    | 4.1.1      | Routine extractions                                                                      | 62  |
|    | 4.1.2      | Comparisons with MERIS MGVI and MTCI climatology                                         |     |
|    | 4.1.3      | Comparison with GBOV (Ground-Based Observations for Validation) data v3                  |     |
|    | 4.1.4      | Sentinel-3A and 3B biophysical variables inter-annual variability results                |     |
|    | 4.2 [0     | OLCI-L2LRF-CV-410 & OLCI-L2LRF-CV-420] — Cloud Masking & Surface Classification for Land | I   |
|    | Products   |                                                                                          | 76  |



## Data Quality Report –Sentinel-3 OLCI

### October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: v

|   | 4.2. | 1 Sky Camera based validation – prototype results September 2023 | 76 |
|---|------|------------------------------------------------------------------|----|
| 5 | VALI | DATION OF INTEGRATED WATER VAPOUR OVER LAND & WATER              | 88 |
| 6 | LEVE | EL 2 SYN PRODUCTS VALIDATION                                     | 91 |
|   | 6.1  | SYN L2 SDR products                                              | 91 |
|   | 6.2  | SY_2_VGP, SY_2_VG1 and SY_2_V10 products                         | 91 |
|   | 6.3  | SYN L2 AOD NTC products                                          | 95 |
| 7 | EVE  | NTS                                                              | 96 |
| 8 | APP  | ENDIX A                                                          | 97 |

## **Optical MPC**

## Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: vi

## **List of Figures**

| Figure 1: long term monitoring of OLCI-A CCD temperatures using minimum value (top), time averaged values (middle), and maximum value (bottom) provided in the annotations of the Radiometric Calibration Level 1 products, for the shutter frames, all radiometric calibrations so far except the first one (absolute orbit 183) for which the instrument was not yet thermally stable                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2: Same as Figure 1 for diffuser frames3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 3: long term monitoring of OLCI-B CCD temperatures using minimum value (top), time averaged values (middle), and maximum value (bottom) provided in the annotations of the Radiometric Calibration Level 1 products, for the Shutter frames, all radiometric calibrations so far except the first one (absolute orbit 167) for which the instrument was not yet thermally stable                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 4: same as Figure 3 for diffuser frames 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 5: Sun azimuth angles during acquired OLCI-A Radiometric Calibrations (diffuser frame) on top of nominal yearly cycle (black curve). Diffuser 1 with diamonds, diffuser 2 with crosses. Different colours correspond to different years of acquisition (see the legend inside the figure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 6: same as Figure 5 for OLCI-B 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 7: OLCI-A Sun geometry during radiometric Calibrations on top of characterization ones (diffuser frame)7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 8: same as Figure 7 for OLCI-B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 9: Dark Offset table for band Oa06 with (red) and without (black) HEP filtering (Radiometric Calibration of 22 July 2017). The strong HEP event near pixel 400 has been detected and removed by the HEP filtering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 10: OLCI-A Dark Offset for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 183) for which the instrument was not thermally stable yet 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 11: map of OLCI-A periodic noise for the 5 cameras, for band Oa21. X-axis is detector number (East part, from 540 to 740, where the periodic noise occurs), Y-axis is the orbit number. Y-axis range is focused on the most recent 5000 orbits. The counts have been corrected from the West detectors mean value (not affected by periodic noise) in order to remove mean level gaps and consequently to have a better visualisation of the long term evolution of the periodic noise structure. At the beginning of the mission the periodic noise for band Oa21 had strong amplitude in camera 2, 3 and 5 compared to camera 1 and 4. However PN evolved through the mission and these discrepancies between cameras have been reduced. At the time of this Cyclic Report Camera 2 still shows a slightly higher PN than other cameras |
| Figure 12: same as Figure 11 for smear band 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 13: OLCI-A Dark Current for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 183) for which the instrument was not thermally stable yet 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 14: left column: ACT mean on 400 first detectors of OLCI-A Dark Current coefficients for spectral band Oa01 (top) and Oa21 (bottom). Right column: same as left column but for Standard deviation instead of mean. We see an increase of the DC level as a function of time especially for band Oa21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| width (right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 16: OLCI-B Dark Offset for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 167) for which the instrument was not thermally stable yet 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: vii

| part, from 540 to 740, where the periodic noise occurs), Y-axis is the orbit number. The counts have been corrected from the West detectors mean value (not affected by periodic noise) in order to remove mean level gaps and consequently to have a better visualization of the long term evolution of the periodic noise structure. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 18: same as Figure 17 for smear band 15                                                                                                                                                                                                                                                                                         |
| Figure 19: OLCI-B Dark Current for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 167) for which the instrument was not thermally stable yet                                                                                                                                        |
| Figure 20: left column: ACT mean on 400 first detectors of OLCI-B Dark Current coefficients for spectral band Oa01 (top) and Oa21 (bottom). Right column: same as left column but for Standard deviation instead of mean. We see an increase of the DC level as a function of time especially for band Oa21                            |
| Figure 21: OLCI-B Dark Current increase rates with time (in counts per year) vs. band (left) and vs. band width (right) 17                                                                                                                                                                                                             |
| Figure 22: OLCI-A Gain Coefficients for band Oa1 (top) and Oa21 (bottom), derived using the in-flight BRDF model. The dataset is made of all diffuser 1 radiometric calibrations since orbit 979 18                                                                                                                                    |
| Figure 23: camera averaged gain relative evolution with respect to calibration of 25/04/2016 (change of OLCI channel settings), as a function of elapsed time since the beginning of the mission; one curve for each band (see colour code on plots), one plot for each module. The diffuser ageing is taken into account 19           |
| Figure 24: OLCI-B Gain Coefficients for band Oa1 (top) and Oa21 (bottom), derived using the in-flight BRDF model. The dataset is made of all diffuser 1 radiometric calibrations since orbit 758 20                                                                                                                                    |
| Figure 25: OLCI-B camera averaged gain relative evolution with respect to first calibration after channel programming change (18/06/2018), as a function of elapsed time since the beginning of the mission; one curve for each band (see colour code on plots), one plot for each module. The diffuser ageing is taken into account   |
| Figure 26: RMS performance of the OLCI-A Gain Model of the current processing baseline as a function of orbit 23                                                                                                                                                                                                                       |
| Figure 27: RMS performance of the OLCI-A Gain Model of the previous Processing Baseline as a function of orbit 23                                                                                                                                                                                                                      |
| Figure 28: OLCI-A Camera-averaged instrument evolution since channel programming change (25/04/2016) and up to the most recent calibration (23/10/2023) versus wavelength 24 Figure 29: For the 5 cameras: OLCI-A Evolution model performance, as camera-average and standard                                                          |
| deviation of ratio of Model over Data vs. wavelength, for each orbit of the test dataset, including 9 calibrations in extrapolation, with a colour code for each calibration from blue (oldest) to red (most recent).                                                                                                                  |
| Figure 30: OLCI-A evolution model performance, as ratio of Model over Data vs. pixels, all cameras side by side, over the whole current calibration dataset (since instrument programming update), including 9 calibrations in extrapolation, channels Oa1 to Oa6.                                                                     |
| Figure 31: same as Figure 30 for channels Oa7 to Oa14 27                                                                                                                                                                                                                                                                               |
| Figure 32: same as Figure 30 for channels Oa15 to Oa21 28                                                                                                                                                                                                                                                                              |
| Figure 33: RMS performance of the OLCI-B Gain Model of the current processing baseline as a function of orbit 29                                                                                                                                                                                                                       |



## Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: viii

| of orbit (please note the different vertical scale with respect to Figure 33)                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 35: OLCI-B Camera-averaged instrument evolution since channel programming change (18/06/2018) and up to most recent calibration (27/10/2023) versus wavelength 31                                                                                                                                                                                                                                                      |
| Figure 36: For the 5 cameras: OLCI-B Evolution model performance, as camera-average and standard deviation of ratio of Model over Data vs. wavelength, for each orbit of the test dataset, including 8 calibrations in extrapolation, with a colour code for each calibration from blue (oldest) to red (most recent).                                                                                                        |
| Figure 37: OLCI-B evolution model performance, as ratio of Model over Data vs. pixels, all cameras side by side, over the whole current calibration dataset (since instrument programming update), including 8 calibrations in extrapolation, channels Oa1 to Oa6.                                                                                                                                                            |
| Figure 38: same as Figure 37 for channels Oa7 to Oa14 34                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 39: same as for channels Oa15 to Oa21 35                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 40: OLCI-A Signal to Noise ratio as a function of the spectral band for the 5 cameras. These results have been computed from radiometric calibration data. All calibrations except first one (orbit 183) are presents with the colours corresponding to the orbit number (see legend). The SNR is very stable with time: the curves for all orbits are almost superimposed. The dashed curve is the ESA requirement 37 |
| Figure 41: long-term stability of the SNR estimates from Calibration data, example of channel Oa1 38                                                                                                                                                                                                                                                                                                                          |
| Figure 42: OLCI-B Signal to Noise ratio as a function of the spectral band for the 5 cameras. These results have been computed from radiometric calibration data. All calibrations except first one (orbit 167) are presents with the colours corresponding to the orbit number (see legend). The SNR is very stable with time: the curves for all orbits are almost superimposed. The dashed curve is the ESA requirement 40 |
| Figure 43: long-term stability of the OLCI-B SNR estimates from Calibration data, example of channel Oa1                                                                                                                                                                                                                                                                                                                      |
| Figure 44: overall OLCI-A georeferencing RMS performance time series (left) and number of validated control points corresponding to the performance time series (right) over the whole monitoring period 43 Figure 45: across-track (left) and along-track (right) OLCI-A georeferencing biases time series for Camera 1. Blue line is the average, black lines are average plus and minus 1 sigma                            |
| Figure 46: same as Figure 45 for Camera 2 44                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 47: same as Figure 45 for Camera 3 44                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 48: same as Figure 45 for Camera 4 45                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 49: same as Figure 45 for Camera 5 45                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 50: OLCI-A spatial across-track misregistration at each camera transition (left) and maximum amplitude of the across-track error within each camera (left).                                                                                                                                                                                                                                                            |
| Figure 51: OLCI-A spatial along-track misregistration at each camera transition (left) and maximum amplitude of the along-track error within each camera (left).                                                                                                                                                                                                                                                              |
| Figure 52: overall OLCI-B georeferencing RMS performance time series over the whole monitoring period (left) and corresponding number of validated control points (right)                                                                                                                                                                                                                                                     |
| Figure 53: across-track (left) and along-track (right) OLCI-B georeferencing biases time series for Camera 1                                                                                                                                                                                                                                                                                                                  |
| rigure 34. Same de rigure 35 lui Camera 2 4/                                                                                                                                                                                                                                                                                                                                                                                  |



## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: ix

| Figure 55: same as Figure 53 for Camera 3 47                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 56: same as Figure 53 for Camera 4 48                                                                                                                                                                                                                                                                                                                                           |
| Figure 57: same as Figure 53 for Camera 5 48                                                                                                                                                                                                                                                                                                                                           |
| Figure 58: OLCI-B spatial across-track misregistration at each camera transition (left) and maximum amplitude of the across-track error within each camera (left) 48                                                                                                                                                                                                                   |
| Figure 59: OLCI-B spatial along-track misregistration at each camera transition (left) and maximum amplitude of the along-track error within each camera (left).                                                                                                                                                                                                                       |
| Figure 60: summary of S3ETRAC products generation for OLCI-A (number of OLCI-A L1 products Ingested, blue — number of S3ETRAC extracted products generated, green — number of S3ETRAC runs without generation of output product (data not meeting selection requirements), yellow — number of runs ending in error, red, one plot per site type)                                       |
| Figure 61: summary of S3ETRAC products generation for OLCI-B (number of OLCI-B L1 products Ingested, yellow – number of S3ETRAC extracted products generated, blue – number of S3ETRAC runs without generation of output product (data not meeting selection requirements), green – number of runs ending in error, red, one plot per site type)                                       |
| Figure 62: Time-series of the elementary ratios (observed/simulated) signal from OLCI-A for (top to bottom) bands Oa03 and Oa17 respectively over Jan. – mid-Oct. 2023 from the six PICS Cal/Val sites. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty                                                      |
| Figure 63: Time-series of the elementary ratios (observed/simulated) signal from OLCI-B for (top to bottom) bands Oa08 and Oa17 respectively over Jan. – mid-Oct 2023 from the six PICS Cal/Val sites. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty                                                       |
| Figure 64: The estimated gain values for OLCI-A and OLCI-B over the 6 PICS sites identified by CEOS over the period January 2023 – mid-October 2023 as a function of wavelength. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty 55                                                                          |
| Figure 65: The estimated gain values for OLCI-A and OLCI-B from Glint, Rayleigh and PICS methods over the period January 2022 – end October 2023 as a function of wavelength. We use the gain value of Oa8 from PICS-Desert method as reference gain for Glint method. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the method uncertainties |
| Figure 66: Ratio of observed TOA reflectance to simulated one for (black) MERIS, (pale-green) S2A/MSI, (white) S2B/MSI, (blue) S3A/OLCI, (green) S3B/OLCI, (red) S3A/SLSTR-NADIR, and (cyan) S3B/SLSTR-NADIR averaged over the six PICS test sites over different periods as a function of wavelength 57                                                                               |
| Figure 67: OSCAR Rayleigh S3A and S3B Calibration results as a function of wavelength for October 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products 58                                                                                                                                                                                |
| Figure 68: OSCAR Rayleigh OLCI-A and OLCI-B Calibration results as a function of wavelength for all acquisitions of 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products 59                                                                                                                                                              |
| Figure 69: OSCAR Glitter OLCI-A & OLCI-B Calibration results as a function of wavelength for October 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products 60                                                                                                                                                                             |



## Data Quality Report –Sentinel-3 OLCI

### October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: x

| of 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly (                                                                                                                                                                                                                             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| products                                                                                                                                                                                                                                                                                                               |             |
| Figure 71: DeGeb time series over current report period                                                                                                                                                                                                                                                                | 62          |
| Figure 72: ITCat time series over current report period                                                                                                                                                                                                                                                                | 63          |
| Figure 73: ITIsp time series over current report period                                                                                                                                                                                                                                                                | 63          |
| Figure 74: ITSro time series over current report period                                                                                                                                                                                                                                                                | 64          |
| Figure 75: ITTra time series over current report period                                                                                                                                                                                                                                                                | 64          |
| Figure 76: SPAli time series over current report period                                                                                                                                                                                                                                                                | 65          |
| Figure 77: UKNFo time series over current report period                                                                                                                                                                                                                                                                | 65          |
| Figure 78: USNe1 time series over current report period                                                                                                                                                                                                                                                                | 66          |
| Figure 79: USNe2 time series over current report period                                                                                                                                                                                                                                                                | 66          |
| Figure 80: USNe3 time series over current report period                                                                                                                                                                                                                                                                | 67          |
| Figure 81: DeGeb time series over current report period                                                                                                                                                                                                                                                                | 67          |
| Figure 82: ITCat time series over current report period                                                                                                                                                                                                                                                                | 68          |
| Figure 83: ITIsp time series over current report period                                                                                                                                                                                                                                                                | 68          |
| Figure 84: ITSro time series over current report period                                                                                                                                                                                                                                                                | 69          |
| Figure 85: ITTra time series over current report period                                                                                                                                                                                                                                                                | 69          |
| Figure 86: SPAli time series over current report period                                                                                                                                                                                                                                                                | 70          |
| Figure 87: UKNFo time series over current report period                                                                                                                                                                                                                                                                | 70          |
| Figure 88: USNe1 time series over current report period                                                                                                                                                                                                                                                                | 71          |
| Figure 89: USNe2 time series over current report period                                                                                                                                                                                                                                                                | 71          |
| Figure 90: USNe3 time series over current report period                                                                                                                                                                                                                                                                | 72          |
| Figure 91: Time series (left) of GIFAPAR and MGVI and a corresponding scatterplot of the monthly me for site Brasschaat and USNe1 (representing S3A) and Alice and Central Plain (representing S3B). climatology of MERIS FAPAR (black and grey colours) is compared against 2022 (blue colours) and 20 (red colours). | The<br>023  |
| Figure 92: Time series (left) of OTCI and MTCI and a corresponding scatterplot of the monthly mean site Disney and ITCat (representing S3A) and Underc and Loobos (representing S3B). The climatology MERIS MTCI (black and grey colours) is compared against 2022 (blue colours) and 2023 (red colours).              | for<br>y of |
| Figure 93: Temperature and cloud cover Rome, October 2023 (source: https://woweather.info/forecast/italy/rome/October-2023/)                                                                                                                                                                                           |             |
| Figure 94: Cloud observations and precipitation Rome, October 2023 (sour https://weatherspark.com/h/m/71779/2023/6/Historical-Weather-in-October-2023-in-Rome-Italy)                                                                                                                                                   |             |
| Figure 95: Sky camera acquisitions over Rome during Sentinel-3 OLCI overpass                                                                                                                                                                                                                                           | 79          |
| Figure 96: Classified sky camera acquisitions over Rome during Sentinel-3 OLCI overpass                                                                                                                                                                                                                                | 80          |
| Figure 97: Confusion matrix showing validation results for OLCI L2 cloud screening including margin aga SC1 automated classification                                                                                                                                                                                   |             |
| Figure 98: Confusion matrix showing validation results for OLCI L2 cloud screening excluding management SC1 automated classification                                                                                                                                                                                   | _           |

## **Optical MPC**

## Data Quality Report –Sentinel-3 OLCI

### October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: xi

| Figure 99: Confusion matrix showing validation results for OLCI L2 cloud screening including margin against SC1 manual classification                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 100: Confusion matrix showing validation results for OLCI L2 cloud screening excluding margin against SC1 manual classification 82                                                                                                                                                                                     |
| Figure 101: Temperature and cloud cover Valencia, October 2023 (source: https://world-weather.info/forecast/spain/valencia/October-2023/) 83                                                                                                                                                                                  |
| Figure 102: Cloud observations and precipitation Valencia, October 2023 (source: https://weatherspark.com/h/m/42614/2023/10/Historical-Weather-in-October-2023-in-Valencia-Spain#Figures-CloudCover)84                                                                                                                        |
| Figure 103: Sky camera acquisitions over Valencia during Sentinel-3 OLCI overpass 85                                                                                                                                                                                                                                          |
| Figure 104: Classified sky camera acquisitions over Valencia during Sentinel-3 OLCI overpass 85                                                                                                                                                                                                                               |
| Figure 105: Confusion matrix showing validation results for OLCI L2 cloud screening including margin against SC1 automated classification 86                                                                                                                                                                                  |
| Figure 106: Confusion matrix showing validation results for OLCI L2 cloud screening excluding margin against SC1 automated classification 87                                                                                                                                                                                  |
| Figure 107: Upper: Scatter plot of the IWV products, derived from OLCI (A left, B right) above land and from SUOMI NET GNSS measurements. Middle: Histogram of the difference between OLCI (A: left, B: right) and GNSS (blue: original OLCI, orange: bias corrected OLCI). Lower: Positions of the GNSS (A: left, B: right). |
| Figure 108: Temporal evolution of different quality measures for OLCI A (left) and OLCI B (right) with respect to SUOMI Net. From top to bottom: systematic deviation factor, bias, root mean squared difference (with and without bias correction), explained variance (number in boxes are the numbers of matchups)         |
| Figure 109: Scatter density plots between SY_V10 S3A (top) or S3B (bottom) and PROBA-V C2 S10-TOC for BLUE, RED, NIR and SWIR bands (left to right), October/2023 vs. October/201992                                                                                                                                          |
| Figure 110: Temporal evolution of APU statistics between SY_2_V10 S3A (left) or S3B (right) and PROBA-V S10-TOC for BLUE, RED, NIR and SWIR bands (top to bottom), January/2021 – October/2023 (S3 SYN VGT) vs. January/2017 – October/2019 (PROBA-V)                                                                         |
| Figure 111: Temporal evolution of APU statistics between S3A_SY_2_V10 and S3B_SY_2_V10 for BLUE, RED, NIR and SWIR bands (top to bottom), January/2021 – October/202394                                                                                                                                                       |

## **Optical MPC**

## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: xii

## **List of Tables**

| Table 1: OLCI-A SNR figures as derived from Radiometric Calibration data. Figures are given for each camera (time average and standard deviation), and for the whole instrument. The requirement and its reference radiance level are recalled (in mW.sr <sup>-1</sup> .m <sup>-2</sup> .nm <sup>-1</sup> ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: OLCI-B SNR figures as derived from Radiometric Calibration data. Figures are given for each camera (time average and standard deviation), and for the whole instrument. The requirement and its reference radiance level are recalled (in mW.sr <sup>-1</sup> .m <sup>-2</sup> .nm <sup>-1</sup> ) |
| Table 3: S3ETRAC Rayleigh Calibration sites 58                                                                                                                                                                                                                                                              |
| Table 4. OSCAR Rayleigh calibration results for S3A and S3B (average and standard deviation over all 2023 acquisitions) over all scenes currently (re)processed with the new climatology and observed difference (in %) between OLCIA and OLCIB                                                             |
| Table 5: OSCAR Glitter calibration results for OLCI-A and OLCI-B (average and standard deviation over all acquisitions of 2023) currently processed with the new climatology and observed difference (in %) 61                                                                                              |
| Table 6: S3VT, CEOS and GBOV validation sites analysed 73                                                                                                                                                                                                                                                   |



### **Data Quality Report – Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 1

## 1 Processing Baseline Version

### 1.1 Sentinel3-A

| IPF      | IPF / Processing Baseline version                    | Date of deployment |
|----------|------------------------------------------------------|--------------------|
| OL1      | 06.17 / OLL1003.03.00 (with uncertainties activated) | 25/07/2023         |
| OL2 LAND | 06.18 / OLL2L.002.11.02                              | 25/07/2023         |
| SY2      | 06.25 / SYN_L2002.18.01                              | 25/07/2023         |
| SY2_VGS  | 06.12 / SYN_L2V.002.09.01                            | 25/07/2023         |
| SY2_AOD  | 01.08 / AOD_NTC.002.08.01                            | 25/07/2023         |

### 1.2 Sentinel3-B

| IPF      | IPF / Processing Baseline version                    | Date of deployment |
|----------|------------------------------------------------------|--------------------|
| OL1      | 06.17 / OLL1003.03.00 (with uncertainties activated) | 18/07/2023         |
| OL2 Land | 06.18 / OLL2L.002.11.02                              | 18/07/2023         |
| SY2      | 06.25 / SYN_L2002.18.01                              | 18/07/2023         |
| SY2_VGS  | 06.12 / SYN_L2V.002.09.01                            | 18/07/2023         |
| SY2_AOD  | 01.08 / AOD_NTC.002.08.01                            | 18/07/2023         |



Data Quality Report –Sentinel-3 OLCI
October 2023

Issue: 1.0

Ref.:

Date: 10/11/2023

OMPC.ACR.DQR.03.10-2023

Page: 2

## 2 Instrument monitoring

### 2.1 CCD temperatures

#### 2.1.1 OLCI-A

The long-term monitoring of the CCD temperatures is based on Radiometric Calibration Annotations (see Figure 1). Variations are very small (0.09 C peak-to-peak) and no trend can be identified. Data from current reporting period (rightmost data points) do not show any specificity.

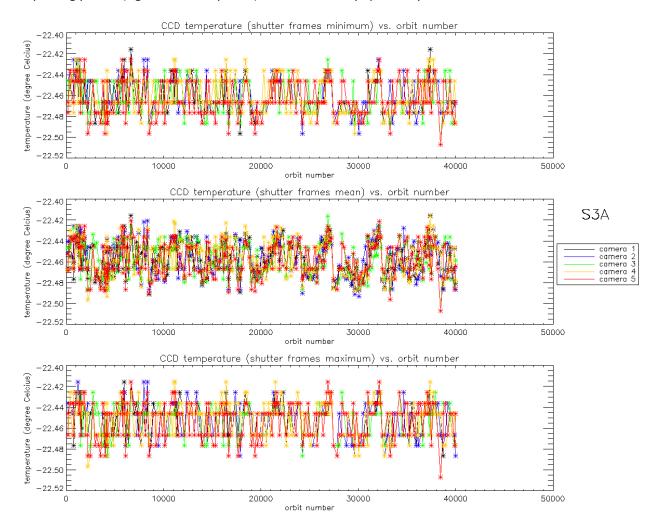



Figure 1: long term monitoring of OLCI-A CCD temperatures using minimum value (top), time averaged values (middle), and maximum value (bottom) provided in the annotations of the Radiometric Calibration Level 1 products, for the shutter frames, all radiometric calibrations so far except the first one (absolute orbit 183) for which the instrument was not yet thermally stable.



### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

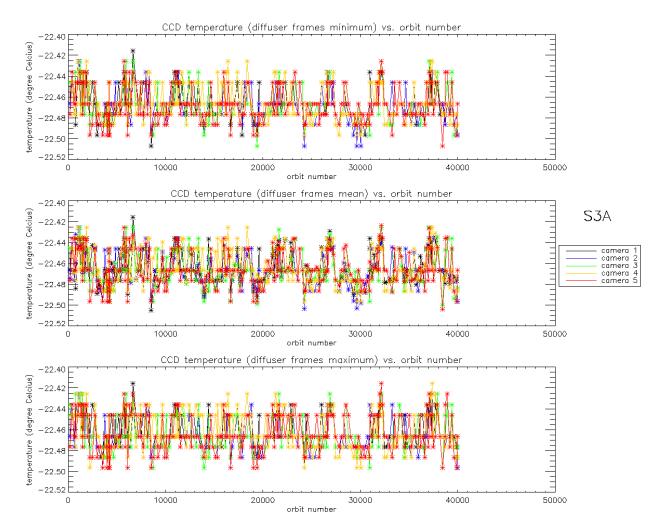



Figure 2: Same as Figure 1 for diffuser frames.

## OPT-MPC Page 10 Control Mixton Performance Cluster Optical Mixton Performance Cluster

### **Optical MPC**

Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 4

#### 2.1.2 OLCI-B

As for OLCI-A, the variations of CCD temperature are very small (0.08 C peak-to-peak) and no trend can be identified. Data from current reporting period (rightmost data points) do not show any specificity.

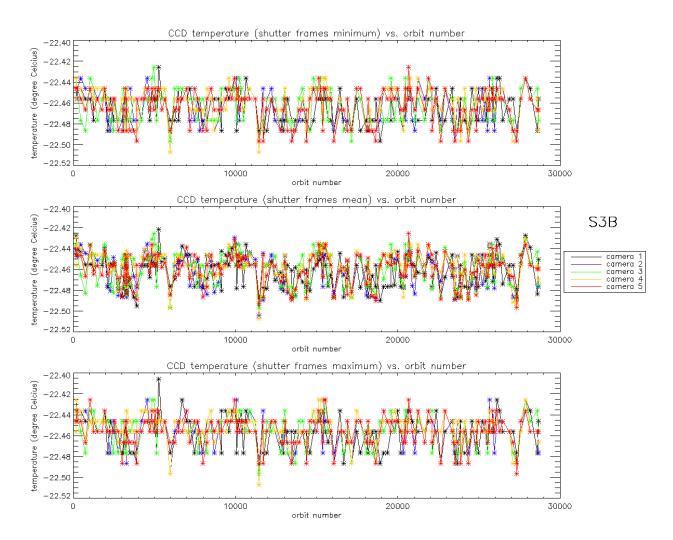



Figure 3: long term monitoring of OLCI-B CCD temperatures using minimum value (top), time averaged values (middle), and maximum value (bottom) provided in the annotations of the Radiometric Calibration Level 1 products, for the Shutter frames, all radiometric calibrations so far except the first one (absolute orbit 167) for which the instrument was not yet thermally stable.



### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 5




Figure 4: same as Figure 3 for diffuser frames.

### 2.2 Radiometric Calibration

For OLCI-A, two Radiometric Calibration sequences have been acquired during the reported period:

- S01 sequence (diffuser 1) on 14/10/2023 10:18 to 10:20 (absolute orbit 39878)
- S01 sequence (diffuser 1) on 23/10/2023 08:04 to 08:06 (absolute orbit 40005)

For OLCI-B, two Radiometric Calibration sequences have been acquired during the reported period:

- Sol sequence (diffuser 1) on 22/10/2023 12:54 to 12:56 (absolute orbit 28600)
- Sol sequence (diffuser 1) on 27/10/2023 15:47 to 15:49 (absolute orbit 28673)

The acquired Sun azimuth angles are presented on Figure 5 for OLCI-A and Figure 6 for OLCI-B, on top of the nominal values without Yaw Manoeuvre (i.e. with nominal Yaw Steering control of the satellite).



## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 6

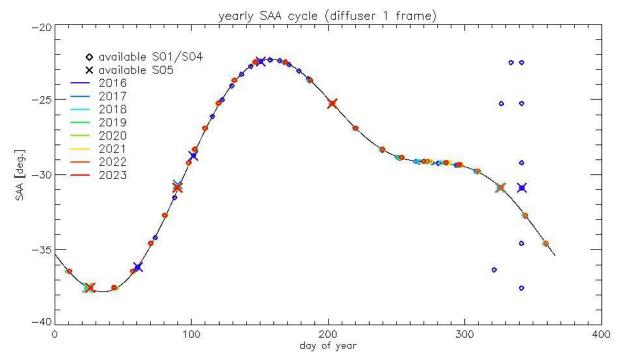



Figure 5: Sun azimuth angles during acquired OLCI-A Radiometric Calibrations (diffuser frame) on top of nominal yearly cycle (black curve). Diffuser 1 with diamonds, diffuser 2 with crosses. Different colours correspond to different years of acquisition (see the legend inside the figure).

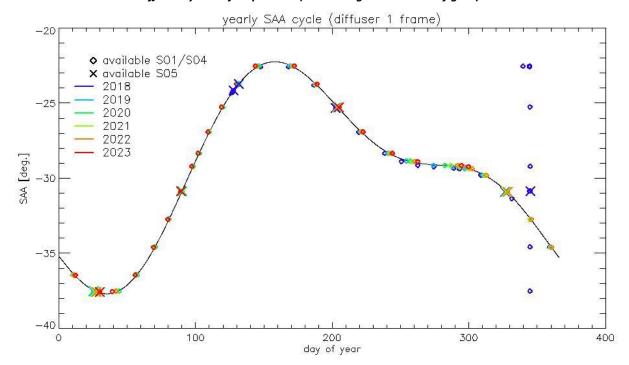



Figure 6: same as Figure 5 for OLCI-B.

Sun Zenith Angles as a function of Sun Azimuth Angles are presented in Figure 7 for OLCI-A and Figure 8 for OLCI-B.

### **Optical MPC**

### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

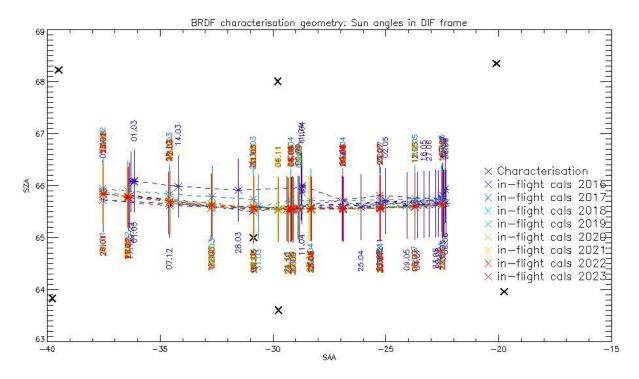



Figure 7: OLCI-A Sun geometry during radiometric Calibrations on top of characterization ones (diffuser frame)

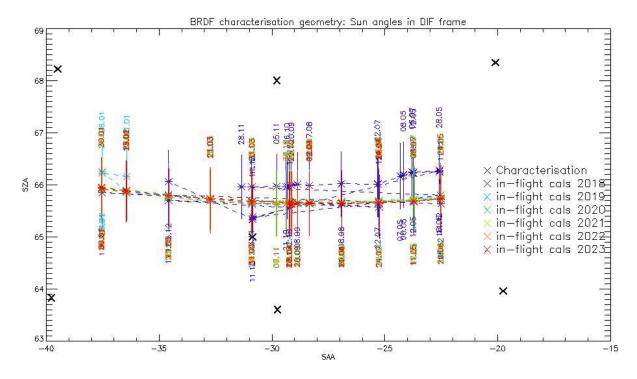



Figure 8: same as Figure 7 for OLCI-B



### **Data Quality Report – Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 8

### 2.2.1 Dark Offsets [OLCI-L1B-CV-230]

### **Note about the High Energy Particles:**

The filtering of High Energy Particle (HEP) events from radiometric calibration data has been implemented (for shutter frames only) in a post processor, allowing generating Dark Offset and Dark Current tables computed on filtered data. The post-processor starts from IPF intermediate data (corrected counts), applies the HEP detection and filtering and finally computes the Dark Offset and Dark Current tables the same way as IPF. An example of the impact of HEP filtering is given in Figure 9.

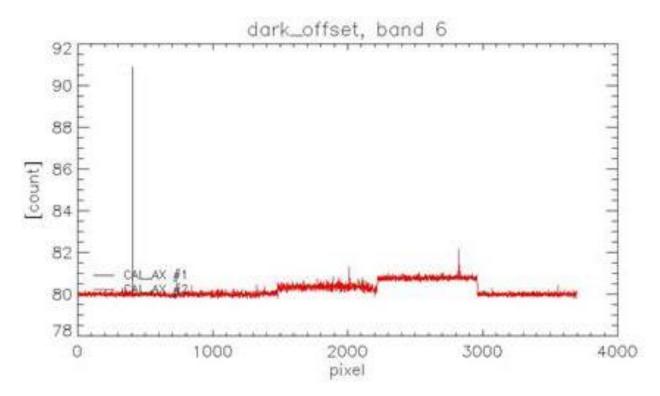



Figure 9: Dark Offset table for band Oa06 with (red) and without (black) HEP filtering (Radiometric Calibration of 22 July 2017). The strong HEP event near pixel 400 has been detected and removed by the HEP filtering.

All results presented below in this section have been obtained using the HEP filtered Dark Offset and Dark Current tables.

### **Optical MPC**

Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 9

#### 2.2.1.2 OLCI-A

#### **Dark offsets**

Dark offsets are continuously affected by the global offset induced by the Periodic Noise on the OCL (Offset Control Loop) convergence. Current reporting period calibrations are affected the same way as others. The amplitude of the shift varies with band and camera from virtually nothing (e.g. camera 2, band 0a1) to up to 5 counts (Oa21, camera 3). The Periodic Noise itself comes on top of the global shift with its known signature: high frequency oscillations with a rapid damp. This effect remains more or less stable with time in terms of amplitude, frequency and decay length, but its phase varies with time, introducing the global offset mentioned above.

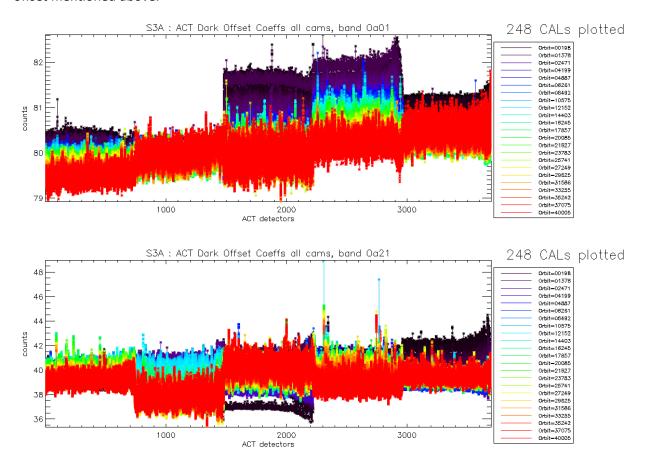



Figure 10: OLCI-A Dark Offset for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 183) for which the instrument was not thermally stable yet.

# OPT-MPC Poptical Mission Performance Cluster Optical Mission Performance Cluster

### **Optical MPC**

### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

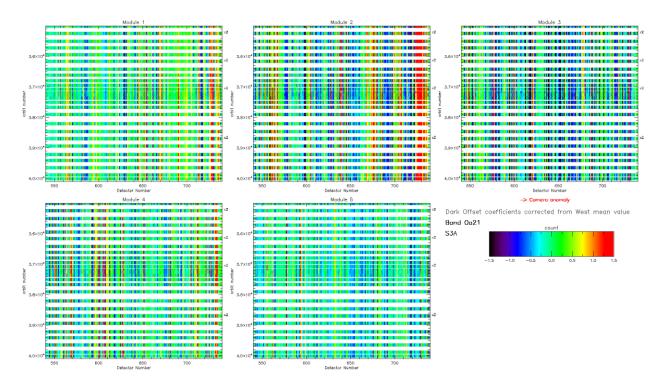



Figure 11: map of OLCI-A periodic noise for the 5 cameras, for band Oa21. X-axis is detector number (East part, from 540 to 740, where the periodic noise occurs), Y-axis is the orbit number. Y-axis range is focused on the most recent 5000 orbits. The counts have been corrected from the West detectors mean value (not affected by periodic noise) in order to remove mean level gaps and consequently to have a better visualisation of the long term evolution of the periodic noise structure. At the beginning of the mission the periodic noise for band Oa21 had strong amplitude in camera 2, 3 and 5 compared to camera 1 and 4. However PN evolved through the mission and these discrepancies between cameras have been reduced. At the time of this Cyclic Report Camera 2 still shows a slightly higher PN than other cameras.



## Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 11

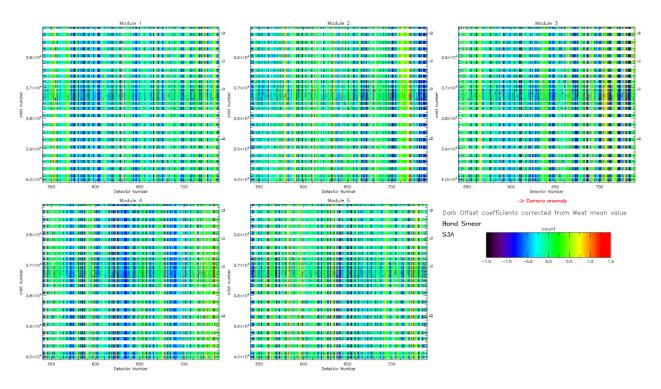



Figure 12: same as Figure 11 for smear band.

Figure 11 and Figure 12 show the so-called 'map of periodic noise' in the 5 cameras, for respectively band 21 and smear band. These maps have been computed from the dark offsets after removal of the mean level of the WEST detectors (not impacted by PN) in order to remove mean level gaps from one CAL to the other and consequently to highlight the shape of the PN. Maps are focused on the last 200 EAST detectors where PN occurs and on a time range covering only the last 5000 orbits in order to better visualize the CALs of the current reporting period.

Figure 11 and Figure 12 show that at this stage of the mission the PN is very stable in all cameras. There is no special behaviour noticed during the reporting period.

### **Dark Currents**

Dark Currents (Figure 13) are not affected by the global offset of the Dark Offsets, thanks to the clamping to the average blind pixels value. However, the oscillations of Periodic Noise remain visible. There is no significant evolution of this parameter during the current reporting period except the small regular increase (almost linear), for all detectors, since the beginning of the mission (see Figure 14).

### **Optical MPC**

## Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

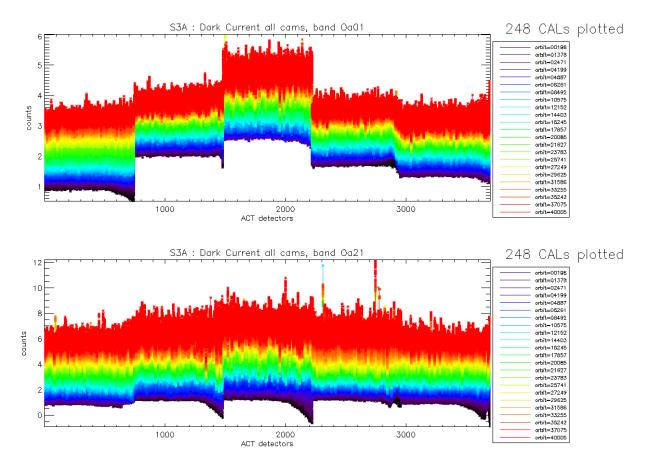



Figure 13: OLCI-A Dark Current for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 183) for which the instrument was not thermally stable yet.

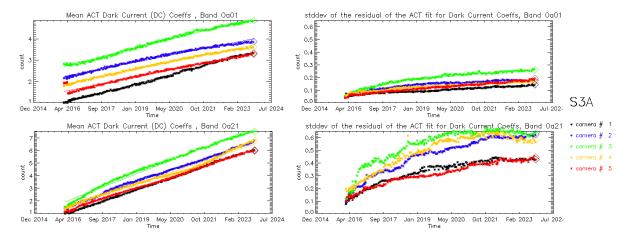



Figure 14: left column: ACT mean on 400 first detectors of OLCI-A Dark Current coefficients for spectral band Oa01 (top) and Oa21 (bottom). Right column: same as left column but for Standard deviation instead of mean.

We see an increase of the DC level as a function of time especially for band Oa21.



## Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 13

A possible explanation of the regular increase of DC could be the increase of the number of hot pixels which is more important in Oa21 because this band is made of more CCD lines than band Oa01 and thus receives more cosmic rays impacts. It is known that cosmic rays degrade the structure of the CCD, generating more and more hot pixels at long term scales. Indeed, when computing the time slopes of the spatially averaged Dark Current as a function of band, i.e. the slopes of curves in left plots of Figure 14, one can see that Oa21 is by far the most affected, followed by the smear band (Figure 15, left); when plotting these slopes against total band width (in CCD rows, regardless of the number of micro-bands), the correlation between the slope values and the width becomes clear (Figure 15, right).

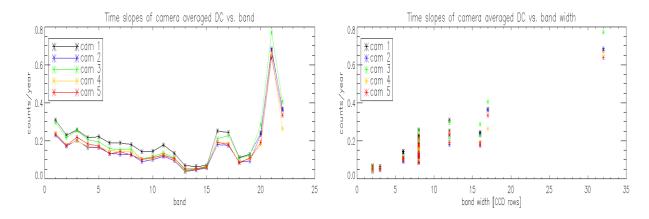



Figure 15: OLCI-A Dark current increase rates with time (in counts per year) vs. band (left) and vs. band width (right)

#### 2.2.1.3 OLCI-B

#### **Dark Offsets**

Dark offsets for OLCI-B show a similar behaviour than for OLCI-A: mean level gaps between different orbits, induced by the presence of a pseudo periodic noise on the east edge of the cameras with a drifting phase.

Evolution of OLCI-B Dark Offset coefficients for band Oa01 and Oa21 are represented in Figure 16.

The periodic noise maps are shown for band Oa21 and smear band respectively in Figure 17 and Figure 18. As it happened for OLCI-A after a few thousands of orbits, the strong periodic noise phase and amplitude drift, present at the very beginning of the mission is now showing a clear stabilization.

Despite this overall stabilization, small evolutions are still noticeable in some bands/camera, like for example camera 1 in band Oa21 (upper left map in Figure 17) or in camera 1 band smear (upper left map in Figure 18).

Globally, OLCI-B PN is slightly less stabilized than OLCI-A PN.



### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

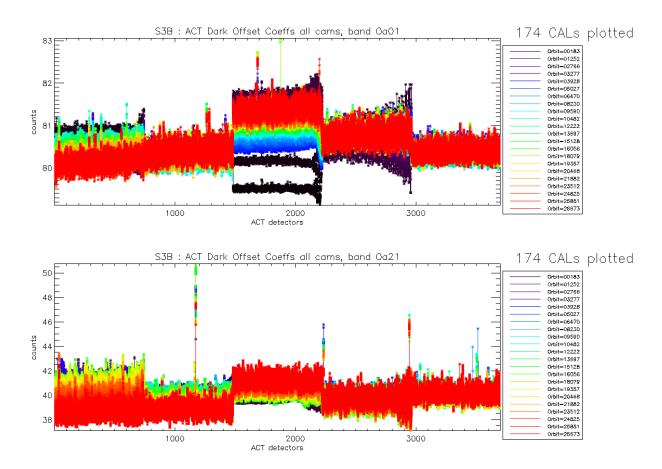



Figure 16: OLCI-B Dark Offset for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 167) for which the instrument was not thermally stable yet.

### **Optical MPC**

### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

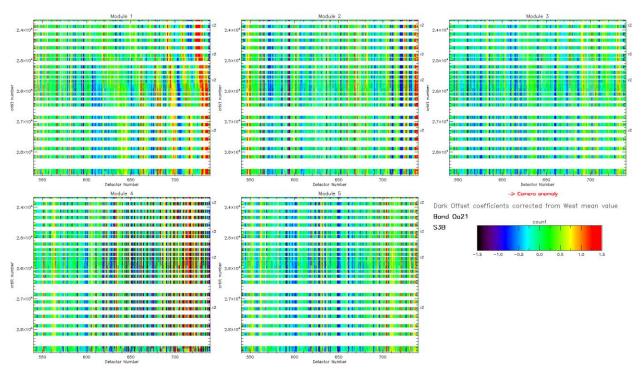



Figure 17: OLCI-B map of periodic noise for the 5 cameras, for band Oa21. X-axis is detector number (East part, from 540 to 740, where the periodic noise occurs), Y-axis is the orbit number. The counts have been corrected from the West detectors mean value (not affected by periodic noise) in order to remove mean level gaps and consequently to have a better visualization of the long term evolution of the periodic noise structure.

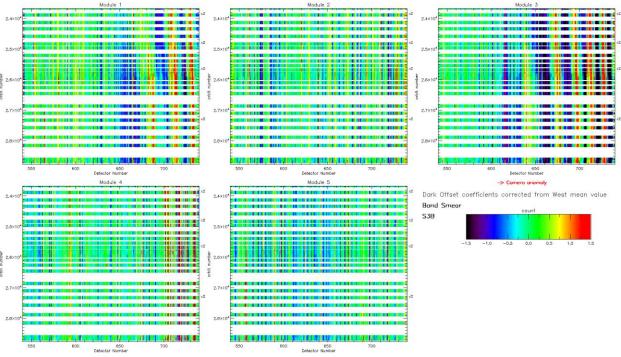



Figure 18: same as Figure 17 for smear band.

### **Optical MPC**

Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 16

### **Dark Currents**

As for OLCI-A there is no significant evolution of the Dark Current coefficients (Figure 19) during the current reporting period except the small regular increase (almost linear), for all detectors, since the beginning of the mission (see Figure 20) probably due to an increase of hot pixels (see Figure 21).

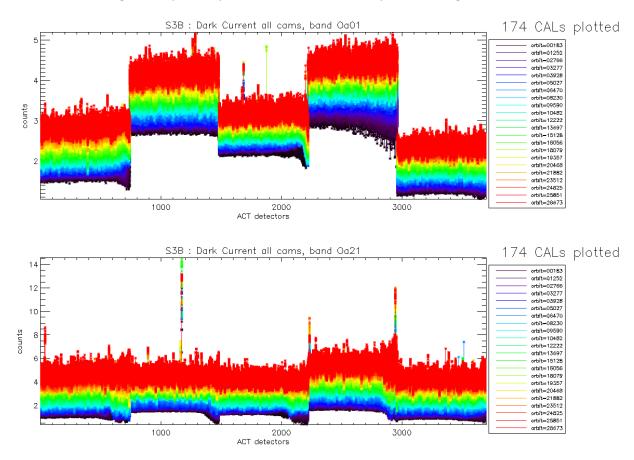



Figure 19: OLCI-B Dark Current for band Oa1 (top) and Oa21 (bottom), all radiometric calibrations so far except the first one (orbit 167) for which the instrument was not thermally stable yet.



### Data Quality Report - Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

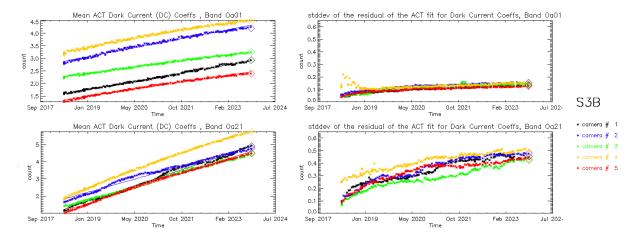



Figure 20: left column: ACT mean on 400 first detectors of OLCI-B Dark Current coefficients for spectral band Oa01 (top) and Oa21 (bottom). Right column: same as left column but for Standard deviation instead of mean.

We see an increase of the DC level as a function of time especially for band Oa21.

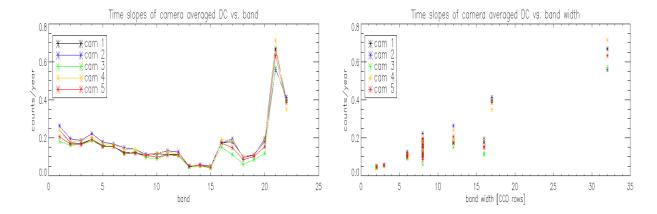



Figure 21: OLCI-B Dark Current increase rates with time (in counts per year) vs. band (left) and vs. band width (right)

### **Optical MPC**

### Data Quality Report - Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 18

### 2.2.3 Instrument response and degradation modelling [OLCI-L1B-CV-250]

### 2.2.3.1 Instrument response monitoring

#### 2.2.3.1.1 OLCI-A

Figure 22 shows the gain coefficients of every pixel for two OLCI-A channels, Oa1 (400 nm) and Oa21 (1020 nm), highlighting the significant evolution of the instrument response since early mission.

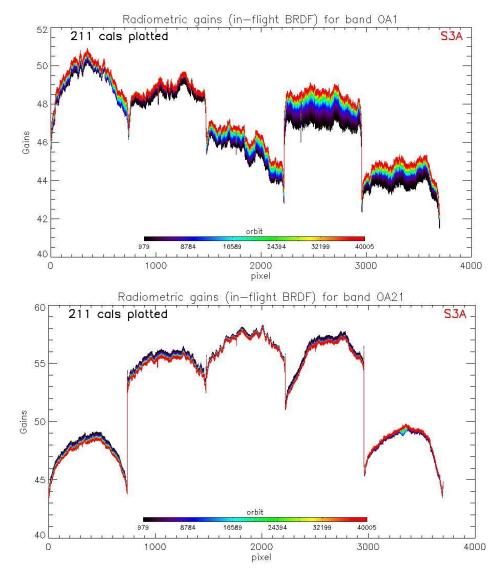



Figure 22: OLCI-A Gain Coefficients for band Oa1 (top) and Oa21 (bottom), derived using the in-flight BRDF model. The dataset is made of all diffuser 1 radiometric calibrations since orbit 979.

## OPT-MPC Data Qu

### **Optical MPC**

Data Quality Report –Sentinel-3 OLCI
October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 19

Figure 23 displays a summary of the time evolution of the cross-track average of the gains (in-flight BRDF, taking into account the diffuser ageing), for each module, relative to a given reference calibration (the 25/04/2016, change of OLCI channel settings). It shows that, if a significant evolution occurred during the early mission, the trends tend in general to stabilize, with some exceptions (e.g. band 1 of camera 1 and 4, bands 2 & 3 of camera 5).

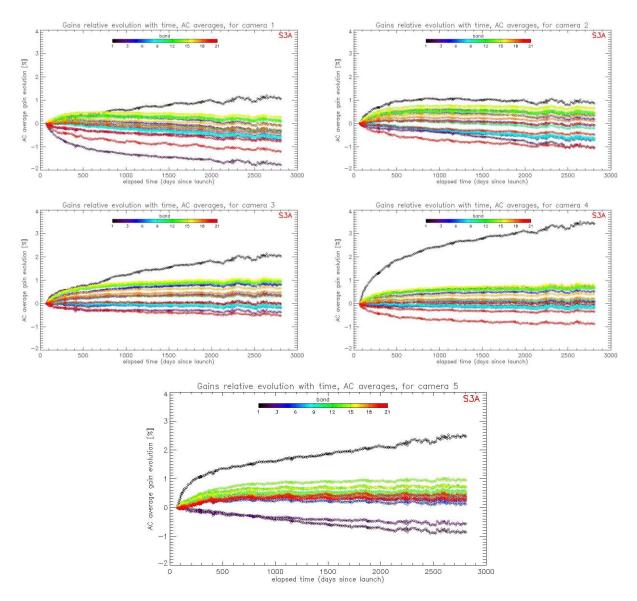



Figure 23: camera averaged gain relative evolution with respect to calibration of 25/04/2016 (change of OLCI channel settings), as a function of elapsed time since the beginning of the mission; one curve for each band (see colour code on plots), one plot for each module. The diffuser ageing is taken into account.

#### **Optical MPC**

## Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 20

#### 2.2.3.1.2 OLCI-B

Figure 24 shows the gain coefficients of every pixel for two OLCI-B channels, Oa1 (400 nm) and Oa21 (1020 nm), highlighting the significant evolution of the instrument response since early mission.

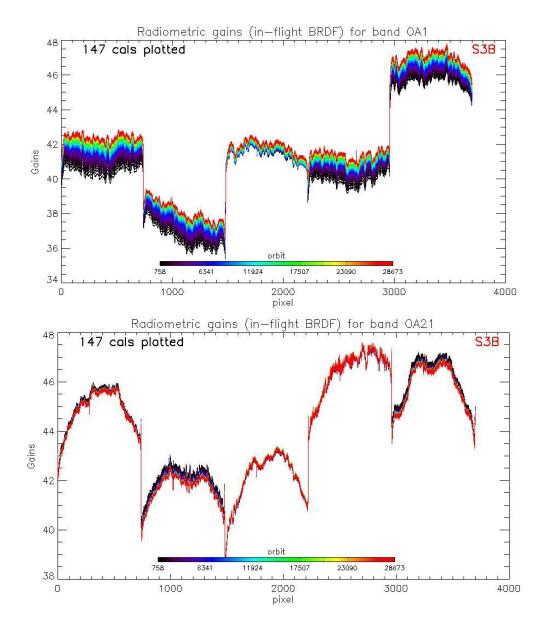



Figure 24: OLCI-B Gain Coefficients for band Oa1 (top) and Oa21 (bottom), derived using the in-flight BRDF model. The dataset is made of all diffuser 1 radiometric calibrations since orbit 758.

Figure 25 displays a summary of the time evolution of the cross-track average of the gains (in-flight BRDF, taking into account diffuser ageing), for each module, relative to a given reference calibration (first calibration after channel programming change: 18/06/2018). It shows that, if a significant evolution occurred during the early mission, the trends tend to stabilize. The large amount of points near elapsed

### **Optical MPC**

### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 21

time = 220 days is due to the yaw manoeuvre campaign. The slight discontinuity near "day 920 since launch" is due to the upgrade of the Ageing model.

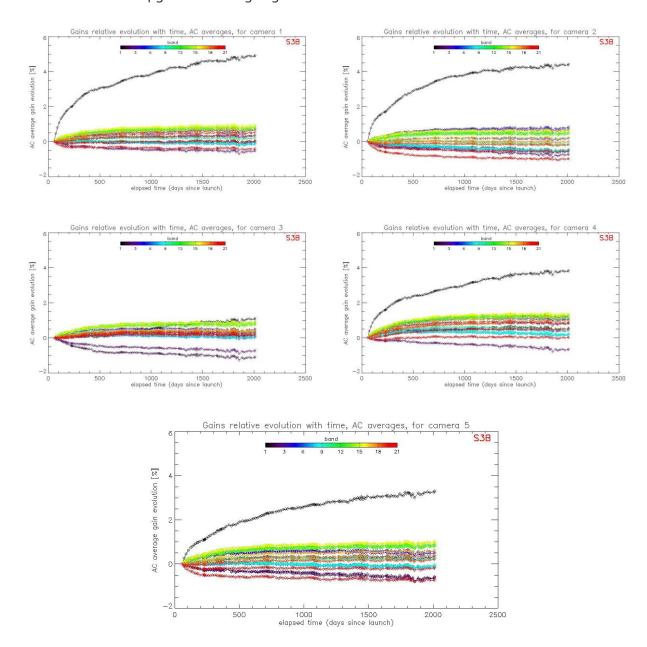



Figure 25: OLCI-B camera averaged gain relative evolution with respect to first calibration after channel programming change (18/06/2018), as a function of elapsed time since the beginning of the mission; one curve for each band (see colour code on plots), one plot for each module. The diffuser ageing is taken into account.

### **Optical MPC**

Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 22

#### 2.2.3.2 Instrument evolution modelling

#### 2.2.3.2.1 OLCI-A

A new OLCI-A Radiometric Gain Model has been put in operations at PDGS the 25/07/2023 (Processing Baseline 3.23). This model has been derived on the basis of an extended (compared to the previous model) Radiometric Calibration dataset, going from 11/04/2016 to 28/05/2023. It includes the correction of the diffuser ageing for the six bluest bands (Oa1 to Oa6) for which it is clearly measurable. The model performance over the complete dataset (including the 9 calibrations in extrapolation over about 5 months) remains better than about 0.13% for all bands. The previous model, trained on a Radiometric Dataset limited to 30/04/2022, shows a clear drift of the model with respect to most recent data (Figure 27), that motivated the change. Comparison of the two figures shows the improvement brought by the updated model over almost all the mission. Performance shown on Figure 26 adopts, as for OLCI-B, the multiple model approach, i.e. different models (two for OLCI-A since this new PB, three for OLCI-B since PB 1.57) are used to cover the whole mission (red dashed line on Figure 26), each model being fitted on a partial dataset (green dashed line on Figure 26) whose coverage is optimized to provide best performance.

### **Optical MPC**

Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

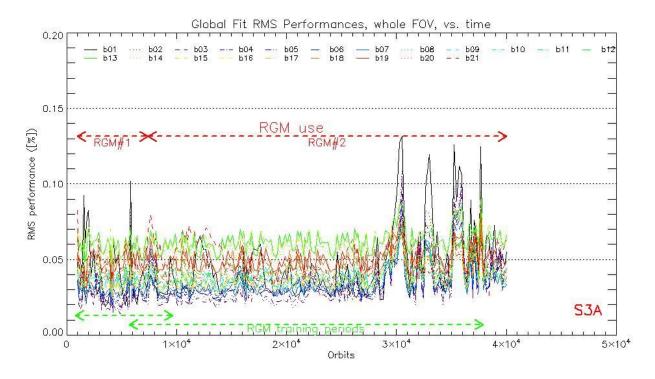



Figure 26: RMS performance of the OLCI-A Gain Model of the current processing baseline as a function of orbit.

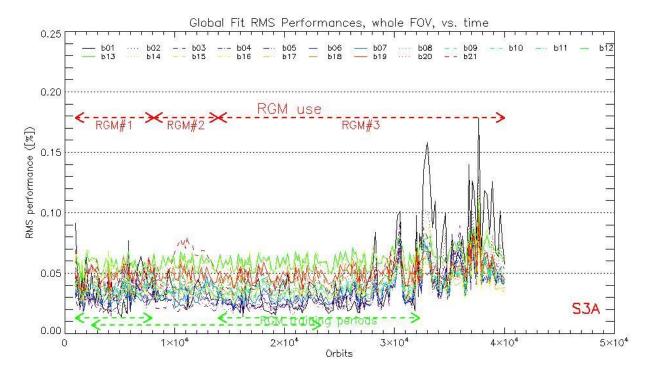



Figure 27: RMS performance of the OLCI-A Gain Model of the previous Processing Baseline as a function of orbit.



### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 24

The overall instrument evolution since channel programming change (25/04/2016) is shown on Figure 28.

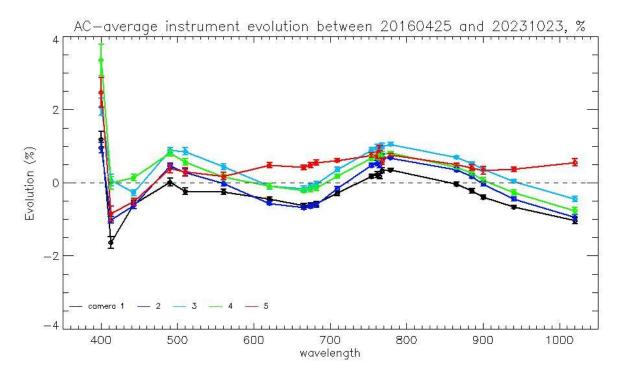



Figure 28: OLCI-A Camera-averaged instrument evolution since channel programming change (25/04/2016) and up to the most recent calibration (23/10/2023) versus wavelength.

The overall per camera performance, as a function of wavelength, and at each orbit is shown on Figure 29 as the average and standard deviation of the model over data ratio.

Finally, Figure 30 to Figure 32 show the detail of the model performance, with across-track plots of the model over data ratios at each orbit, one plot for each channel.

Comparisons of Figure 30 to Figure 32 with their counterparts in DQR of July 2022 clearly demonstrate the improvement brought by the new model whatever the level of detail.



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

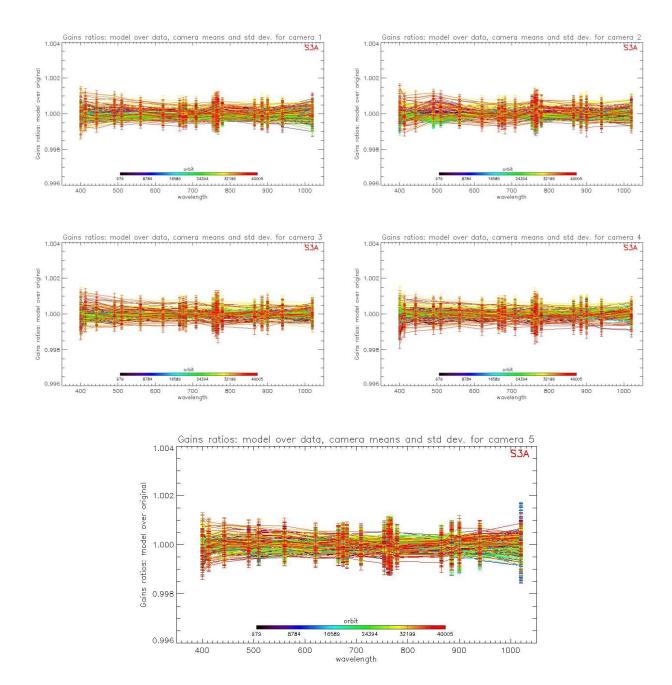



Figure 29: For the 5 cameras: OLCI-A Evolution model performance, as camera-average and standard deviation of ratio of Model over Data vs. wavelength, for each orbit of the test dataset, including 9 calibrations in extrapolation, with a colour code for each calibration from blue (oldest) to red (most recent).



### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

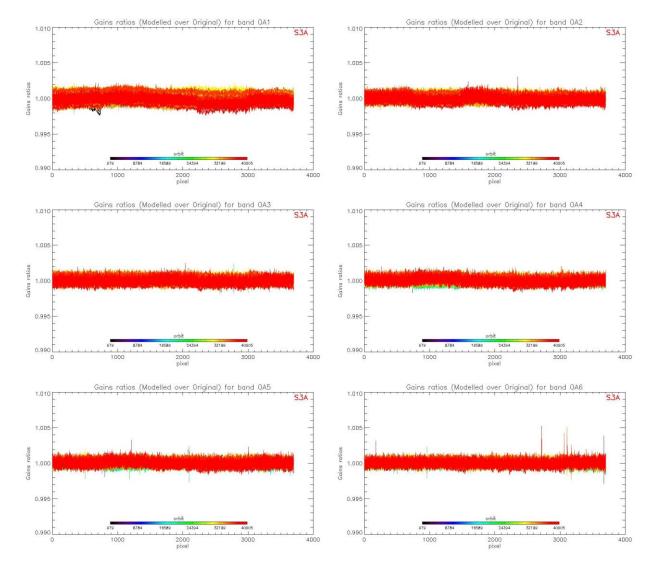



Figure 30: OLCI-A evolution model performance, as ratio of Model over Data vs. pixels, all cameras side by side, over the whole current calibration dataset (since instrument programming update), including 9 calibrations in extrapolation, channels Oa1 to Oa6.

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

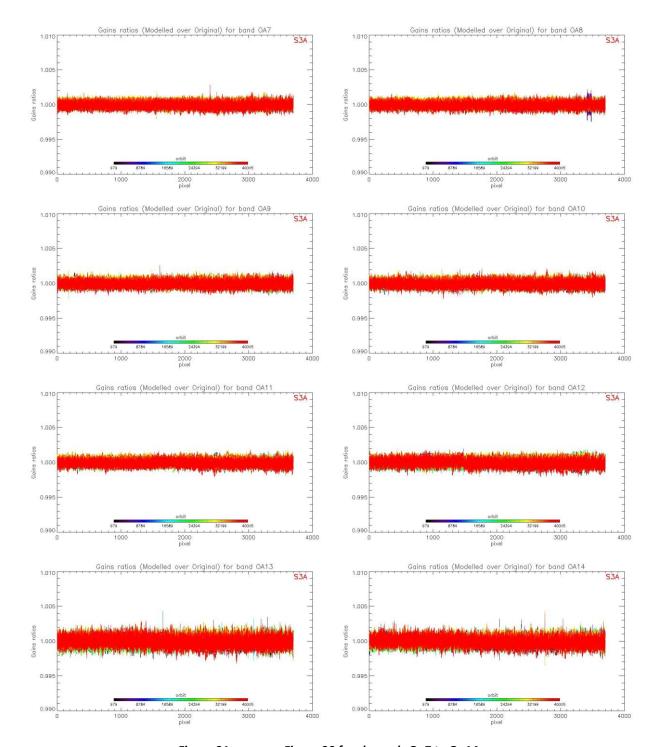



Figure 31: same as Figure 30 for channels Oa7 to Oa14.

# OPT-MPC Paulous Performance Cluster Optical Mission Performance Cluster

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

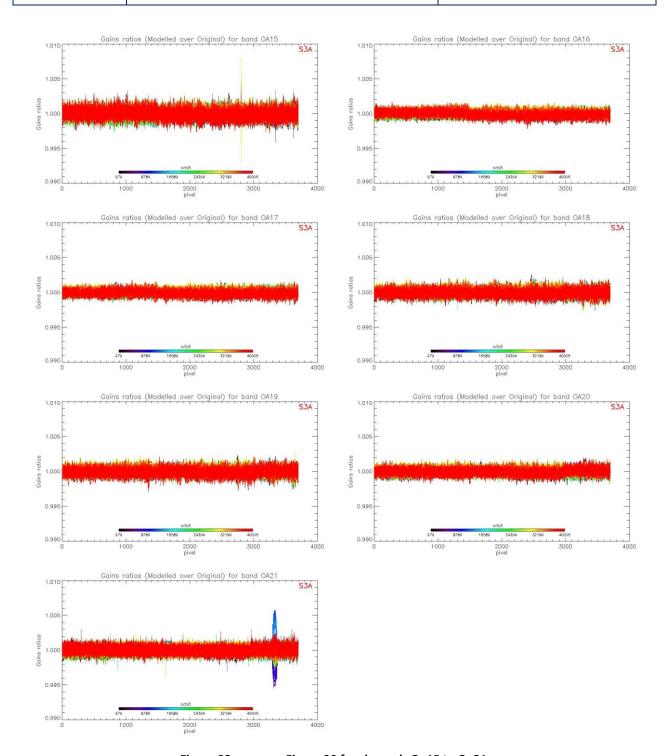



Figure 32: same as Figure 30 for channels Oa15 to Oa21.

#### **Optical MPC**

### Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 29

#### 2.2.3.2.2 OLCI-B

A new OLCI-B Radiometric Gain Model has been put in operations at PDGS on 18/07/2023 (Processing Baseline 3.23). This model has been derived on the basis of an extended Radiometric Calibration dataset (from 08/05/2018 to 24/05/2023). It includes the correction of the diffuser ageing for the five bluest bands (Oa1 to Oa5) for which it is clearly measurable. The model performance over the complete dataset (including 8 calibrations in extrapolation over about 5 months) is illustrated in Figure 33. It remains better than about 0.11% when averaged over the whole field of view for all bands at the exception of a spike near orbit 26500 reaching about up to 0.20 % for Oa02. The previous model, trained on a Radiometric Dataset limited to 29/04/2022, shows a significant drift of the model with respect to most recent data (Figure 34). Comparison of the two figures shows the improvement brought by the updated Model over all the mission.

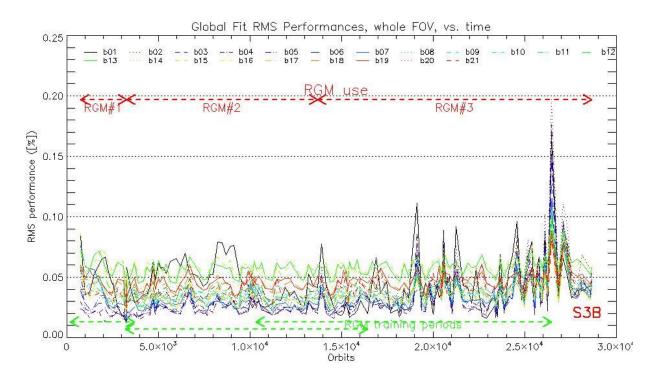



Figure 33: RMS performance of the OLCI-B Gain Model of the current processing baseline as a function of orbit.



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

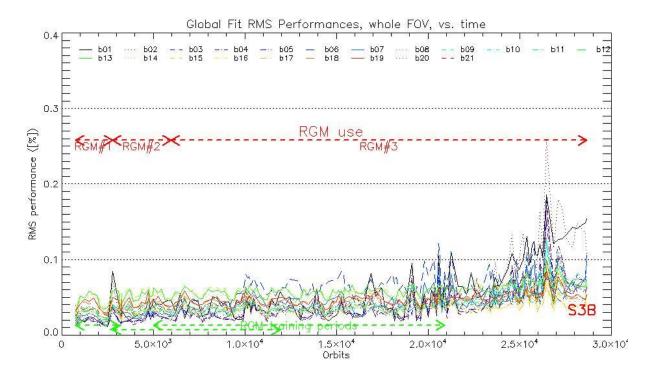



Figure 34: RMS performance of the OLCI-B Gain Model of the previous processing baseline as a function of orbit (please note the different vertical scale with respect to Figure 33).



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 31

The overall instrument evolution since channel programming change (18/06/2018) is shown on Figure 35.

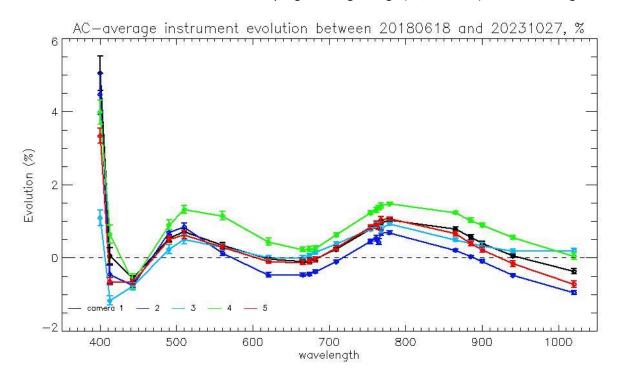



Figure 35: OLCI-B Camera-averaged instrument evolution since channel programming change (18/06/2018) and up to most recent calibration (27/10/2023) versus wavelength.

The overall per camera performance, as a function of wavelength, and at each orbit is shown on Figure 36 as the average and standard deviation of the model over data ratio.

Finally, Figure 37 to Figure 39 show the detail of the model performance, with across-track plots of the model over data ratios at each orbit, one plot for each channel.



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

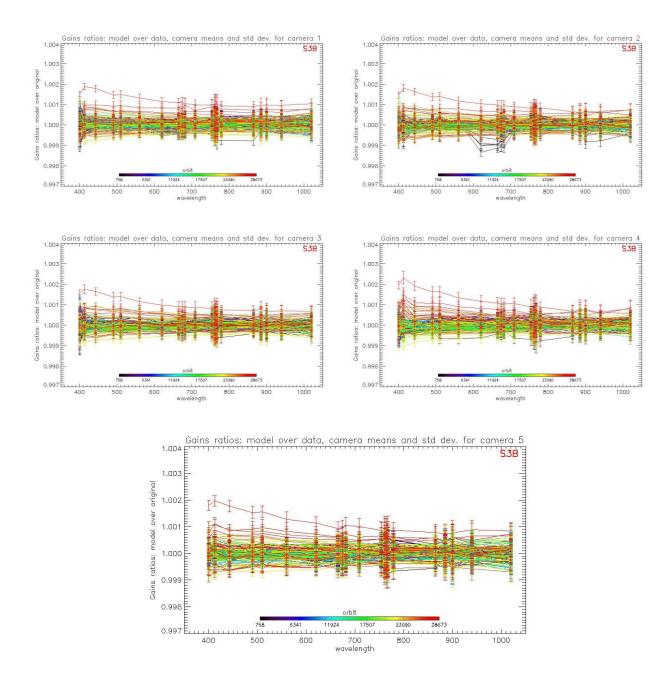



Figure 36: For the 5 cameras: OLCI-B Evolution model performance, as camera-average and standard deviation of ratio of Model over Data vs. wavelength, for each orbit of the test dataset, including 8 calibrations in extrapolation, with a colour code for each calibration from blue (oldest) to red (most recent).

# OPT-MPC Optical Mission Performance Cluster

#### **Optical MPC**

### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

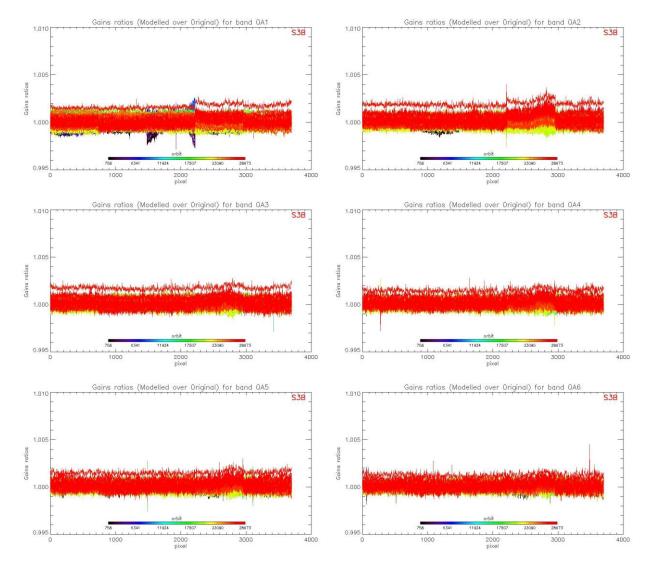



Figure 37: OLCI-B evolution model performance, as ratio of Model over Data vs. pixels, all cameras side by side, over the whole current calibration dataset (since instrument programming update), including 8 calibrations in extrapolation, channels Oa1 to Oa6.

# OPT-MPC Particle Mission Performance Cluster Control Mission Performance Cluster

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

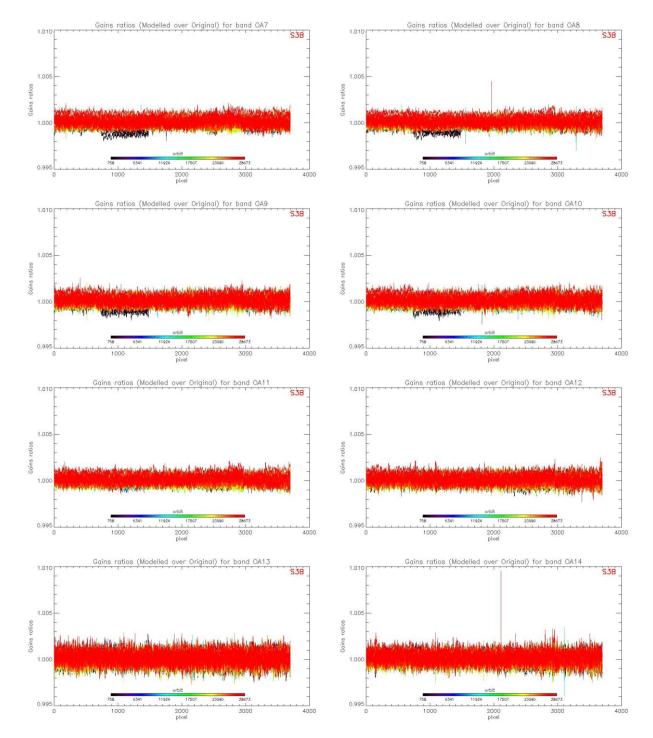



Figure 38: same as Figure 37 for channels Oa7 to Oa14.

# OPT-MPC Particular States Optical Mission Performance Cluster Optical Mission Performance Cluster

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

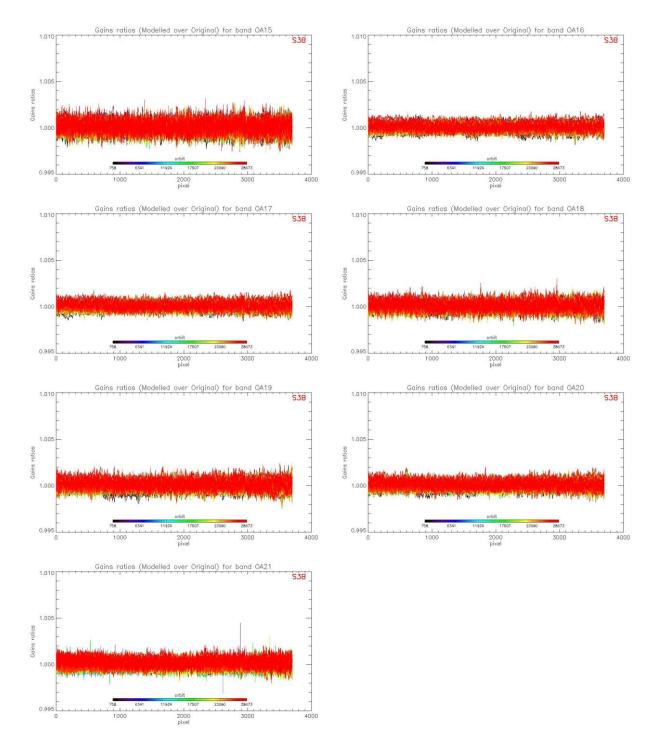



Figure 39: same as for channels Oa15 to Oa21.



### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 36

#### 2.2.4 Ageing of nominal diffuser [OLCI-L1B-CV-240]

#### 2.2.4.1 OLCI-A

There has been no calibration sequence S05 (reference diffuser) for OLCI-A during the current reported period.

Consequently, the last ageing results, presented in July 2023 report, remain valid.

#### 2.2.4.2 OLCI-B

There has been no calibration sequence S05 (reference diffuser) for OLCI-B during the current reported period.

Consequently, the last ageing results, presented in July 2023 report, remain valid.

#### 2.2.5 Updating of calibration ADF [OLCI-L1B-CV-260]

#### 2.2.5.1 OLCI-A

The following CAL\_AX ADF has been delivered to PDGS during the reporting period for OLCI-A.

S3A\_OL\_1\_CAL\_AX\_20230620T000000\_20991231T235959\_20231013T120000\_\_\_\_\_\_MPC\_O\_AL\_029.SEN3

It includes a revised set of radiometric model uncertainty parameters; the Radiometric Gain Model itself is unchanged.

#### 2.2.5.2 OLCI-B

The following CAL\_AX ADF has been delivered to PDGS during the reporting period for OLCI-B.

S3B\_OL\_1\_CAL\_AX\_20230620T000000\_20991231T235959\_20231013T120000\_\_\_\_\_\_MPC\_O\_AL\_019.SEN3

It includes a revised set of radiometric model uncertainty parameters; the Radiometric Gain Model itself is unchanged.

#### 2.3 Spectral Calibration [OLCI-L1B-CV-400]

#### 2.3.1 OLCI-A

There has been no S02+S03 nor S09 Spectral Calibration for OLCI-A in the current reported period.

Consequently, the last spectral calibration results, presented in August DQR, remain valid.

#### 2.3.2 OLCI-B

There has been no S02+S03 nor S09 Spectral Calibration for OLCI-B in the reporting period.

Consequently, the last spectral calibration results, presented in August DQR, remain valid.

#### **Optical MPC**

### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 37

#### 2.4 Signal to Noise assessment [OLCI-L1B-CV-620]

#### 2.4.1 SNR from Radiometric calibration data

#### 2.4.1.1 OLCI-A

SNR computed for all calibration data (S01, S04 and S05 sequences) as a function of band number is presented in Figure 40.

SNR computed for all calibration data as a function of orbit number for band Oa01 (the less stable band) is presented in Figure 41.

There is no significant evolution of this parameter during the current reporting period and the ESA requirement is fulfilled for all bands.

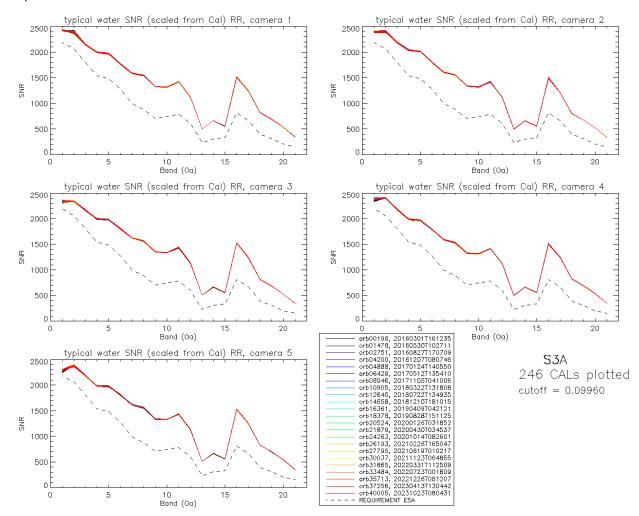



Figure 40: OLCI-A Signal to Noise ratio as a function of the spectral band for the 5 cameras. These results have been computed from radiometric calibration data. All calibrations except first one (orbit 183) are presents with

#### **Optical MPC**

#### Data Quality Report - Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 38

the colours corresponding to the orbit number (see legend). The SNR is very stable with time: the curves for all orbits are almost superimposed. The dashed curve is the ESA requirement.

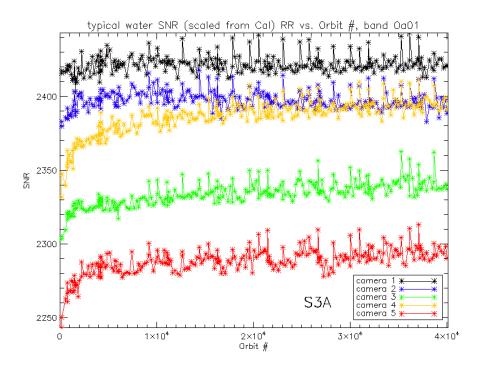



Figure 41: long-term stability of the SNR estimates from Calibration data, example of channel Oa1.

The mission averaged SNR figures are provided in Table 1 below, together with their radiance reference level. According to the OLCI SNR requirements, these figures are valid at these radiance levels and at Reduced Resolution (RR, 1.2 km). They can be scaled to other radiance levels assuming shot noise (CCD sensor noise) is the dominating term, i.e. radiometric noise can be considered Gaussian with its standard deviation varying as the square root of the signal; in other words:  $SNR(L) = SNR(L_{ref}) \cdot \sqrt{\frac{L}{L_{ref}}}$ . Following the same assumption, values at Full Resolution (300m) can be derived from RR ones as 4 times smaller.



### Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Table 1: OLCI-A SNR figures as derived from Radiometric Calibration data. Figures are given for each camera (time average and standard deviation), and for the whole instrument. The requirement and its reference radiance level are recalled (in mW.sr<sup>-1</sup>.m<sup>-2</sup>.nm<sup>-1</sup>).

|          | L <sub>ref</sub> | SNR  | <b>C1</b> |     | C2   |     | <b>C3</b> |     | <b>C4</b> |      | <b>C5</b> |     | All  |     |
|----------|------------------|------|-----------|-----|------|-----|-----------|-----|-----------|------|-----------|-----|------|-----|
| nm       | LU               | RQT  | avg       | std | avg  | std | avg       | std | avg       | std  | avg       | std | avg  | std |
| 400.000  | 63.0             | 2188 | 2421      | 6.2 | 2397 | 6.3 | 2334      | 8.4 | 2386      | 12.0 | 2288      | 9.2 | 2365 | 7.0 |
| 412.000  | 74.1             | 2061 | 2385      | 9.6 | 2402 | 7.8 | 2339      | 5.0 | 2400      | 5.0  | 2378      | 9.5 | 2381 | 6.0 |
| 442.000  | 65.6             | 1811 | 2157      | 6.2 | 2195 | 6.2 | 2163      | 5.0 | 2185      | 4.3  | 2193      | 5.9 | 2178 | 4.3 |
| 490.000  | 51.2             | 1541 | 1999      | 4.8 | 2036 | 4.7 | 1998      | 4.3 | 1984      | 4.4  | 1988      | 4.3 | 2001 | 3.1 |
| 510.000  | 44.4             | 1488 | 1978      | 5.3 | 2014 | 4.9 | 1986      | 4.5 | 1967      | 4.3  | 1985      | 4.2 | 1986 | 3.3 |
| 560.000  | 31.5             | 1280 | 1775      | 4.7 | 1802 | 4.0 | 1803      | 4.8 | 1794      | 3.9  | 1819      | 3.3 | 1798 | 3.0 |
| 620.000  | 21.1             | 997  | 1590      | 4.1 | 1608 | 4.3 | 1624      | 3.2 | 1593      | 3.3  | 1615      | 3.4 | 1606 | 2.5 |
| 665.000  | 16.4             | 883  | 1545      | 4.2 | 1556 | 4.5 | 1566      | 3.9 | 1533      | 3.6  | 1561      | 3.5 | 1552 | 3.0 |
| 674.000  | 15.7             | 707  | 1328      | 3.4 | 1336 | 3.8 | 1350      | 2.8 | 1323      | 3.3  | 1343      | 3.3 | 1336 | 2.4 |
| 681.000  | 15.1             | 745  | 1319      | 3.6 | 1325 | 3.4 | 1337      | 2.7 | 1314      | 2.5  | 1334      | 3.3 | 1326 | 2.1 |
| 709.000  | 12.7             | 785  | 1420      | 4.1 | 1420 | 4.0 | 1435      | 3.4 | 1414      | 3.5  | 1431      | 3.1 | 1424 | 2.7 |
| 754.000  | 10.3             | 605  | 1127      | 3.1 | 1121 | 2.8 | 1136      | 3.1 | 1125      | 2.5  | 1139      | 2.6 | 1130 | 2.1 |
| 761.000  | 6.1              | 232  | 502       | 1.1 | 498  | 1.1 | 505       | 1.1 | 501       | 1.1  | 508       | 1.3 | 503  | 0.8 |
| 764.000  | 7.1              | 305  | 662       | 1.5 | 658  | 1.5 | 668       | 2.0 | 662       | 1.5  | 670       | 1.9 | 664  | 1.2 |
| 768.000  | 7.6              | 330  | 558       | 1.4 | 554  | 1.2 | 563       | 1.3 | 557       | 1.3  | 564       | 1.2 | 559  | 0.9 |
| 779.000  | 9.2              | 812  | 1516      | 4.6 | 1498 | 4.4 | 1527      | 5.0 | 1512      | 4.8  | 1527      | 4.7 | 1516 | 3.9 |
| 865.000  | 6.2              | 666  | 1243      | 3.5 | 1213 | 3.4 | 1240      | 3.7 | 1247      | 3.5  | 1250      | 2.7 | 1239 | 2.7 |
| 885.000  | 6.0              | 395  | 823       | 1.7 | 801  | 1.6 | 814       | 1.9 | 824       | 1.5  | 831       | 1.6 | 819  | 1.0 |
| 900.000  | 4.7              | 308  | 690       | 1.6 | 673  | 1.2 | 683       | 1.6 | 693       | 1.5  | 698       | 1.4 | 688  | 1.0 |
| 940.000  | 2.4              | 203  | 534       | 1.2 | 522  | 1.2 | 525       | 1.0 | 539       | 1.1  | 542       | 1.3 | 532  | 0.7 |
| 1020.000 | 3.9              | 152  | 345       | 0.9 | 337  | 0.8 | 348       | 0.7 | 345       | 0.8  | 351       | 0.8 | 345  | 0.5 |

### OPT-MPC Optical MPC



### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 40

#### 2.4.1.2 OLCI-B

SNR computed for all OLCI-B calibration data (S01, S04 (but not the dark-only S04) and S05 sequences) as a function of band number is presented in Figure 42.

SNR computed for all OLCI-B calibration data as a function of orbit number for band Oa01 (the less stable band) is presented in Figure 43.

As for OLCI-A the SNR is very stable in time. There is no significant evolution of this parameter during the current reporting and the ESA requirement is fulfilled for all bands.

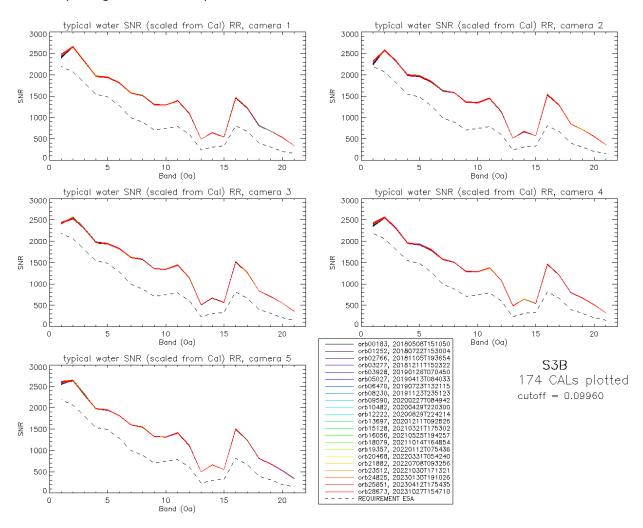



Figure 42: OLCI-B Signal to Noise ratio as a function of the spectral band for the 5 cameras. These results have been computed from radiometric calibration data. All calibrations except first one (orbit 167) are presents with the colours corresponding to the orbit number (see legend). The SNR is very stable with time: the curves for all orbits are almost superimposed. The dashed curve is the ESA requirement.



**Data Quality Report - Sentinel-3 OLCI** 

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

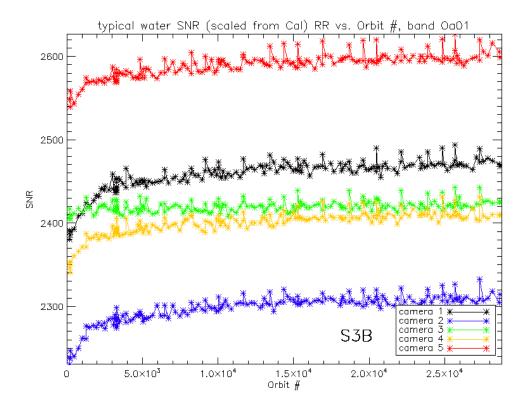



Figure 43: long-term stability of the OLCI-B SNR estimates from Calibration data, example of channel Oa1.



### Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Table 2: OLCI-B SNR figures as derived from Radiometric Calibration data. Figures are given for each camera (time average and standard deviation), and for the whole instrument. The requirement and its reference radiance level are recalled (in mW.sr<sup>-1</sup>.mr<sup>-2</sup>.nm<sup>-1</sup>).

|          | L <sub>ref</sub> | SNR  | C1   |      | C2   |      | <b>C3</b> |     | C4   |      | <b>C5</b> |      | All  |      |
|----------|------------------|------|------|------|------|------|-----------|-----|------|------|-----------|------|------|------|
| nm       | LU               | RQT  | avg  | std  | avg  | std  | avg       | std | avg  | std  | avg       | std  | avg  | std  |
| 400.000  | 63.0             | 2188 | 2458 | 18.6 | 2298 | 16.5 | 2420      | 6.8 | 2400 | 13.9 | 2589      | 14.3 | 2433 | 13.1 |
| 412.000  | 74.1             | 2061 | 2654 | 7.1  | 2568 | 6.7  | 2542      | 9.0 | 2550 | 6.5  | 2636      | 7.9  | 2590 | 5.9  |
| 442.000  | 65.6             | 1811 | 2323 | 6.8  | 2315 | 6.4  | 2298      | 7.1 | 2301 | 7.1  | 2307      | 6.8  | 2309 | 5.9  |
| 490.000  | 51.2             | 1541 | 1966 | 4.8  | 1990 | 5.6  | 1971      | 5.0 | 1952 | 4.6  | 1979      | 4.5  | 1972 | 3.8  |
| 510.000  | 44.4             | 1488 | 1939 | 4.8  | 1968 | 5.9  | 1942      | 5.0 | 1925 | 4.9  | 1952      | 4.7  | 1945 | 4.0  |
| 560.000  | 31.5             | 1280 | 1813 | 4.6  | 1848 | 4.8  | 1829      | 4.6 | 1805 | 4.7  | 1817      | 3.9  | 1822 | 3.5  |
| 620.000  | 21.1             | 997  | 1572 | 4.3  | 1625 | 4.6  | 1624      | 3.9 | 1576 | 3.6  | 1600      | 3.6  | 1600 | 3.0  |
| 665.000  | 16.4             | 883  | 1513 | 4.1  | 1578 | 3.8  | 1573      | 3.8 | 1501 | 3.0  | 1546      | 3.6  | 1542 | 2.8  |
| 674.000  | 15.7             | 707  | 1300 | 3.9  | 1358 | 3.6  | 1353      | 3.2 | 1292 | 2.6  | 1327      | 2.9  | 1326 | 2.4  |
| 681.000  | 15.1             | 745  | 1293 | 3.5  | 1347 | 3.3  | 1343      | 3.1 | 1285 | 2.8  | 1316      | 2.8  | 1317 | 2.2  |
| 709.000  | 12.7             | 785  | 1390 | 4.0  | 1447 | 4.0  | 1443      | 4.1 | 1373 | 2.9  | 1412      | 3.6  | 1413 | 2.9  |
| 754.000  | 10.3             | 605  | 1096 | 3.5  | 1143 | 3.6  | 1142      | 3.2 | 1089 | 2.8  | 1116      | 3.1  | 1117 | 2.7  |
| 761.000  | 6.1              | 232  | 488  | 1.2  | 509  | 1.2  | 509       | 1.3 | 486  | 1.2  | 498       | 1.3  | 498  | 0.9  |
| 764.000  | 7.1              | 305  | 643  | 1.6  | 673  | 2.0  | 672       | 1.8 | 642  | 1.8  | 658       | 1.8  | 657  | 1.4  |
| 768.000  | 7.6              | 330  | 541  | 1.4  | 568  | 1.4  | 564       | 1.3 | 541  | 1.3  | 555       | 1.5  | 554  | 1.0  |
| 779.000  | 9.2              | 812  | 1467 | 4.1  | 1535 | 4.6  | 1527      | 5.1 | 1468 | 4.0  | 1507      | 4.1  | 1501 | 3.6  |
| 865.000  | 6.2              | 666  | 1221 | 3.5  | 1288 | 3.7  | 1258      | 3.6 | 1206 | 3.5  | 1238      | 2.8  | 1242 | 2.7  |
| 885.000  | 6.0              | 395  | 808  | 2.2  | 848  | 1.9  | 834       | 1.9 | 799  | 1.7  | 815       | 2.1  | 821  | 1.4  |
| 900.000  | 4.7              | 308  | 679  | 1.5  | 714  | 1.9  | 704       | 1.7 | 670  | 1.5  | 683       | 1.5  | 690  | 1.2  |
| 940.000  | 2.4              | 203  | 527  | 1.3  | 549  | 1.6  | 551       | 1.2 | 510  | 1.1  | 522       | 1.3  | 532  | 0.9  |
| 1020.000 | 3.9              | 152  | 336  | 0.8  | 358  | 1.2  | 358       | 0.8 | 318  | 0.7  | 338       | 0.9  | 342  | 0.6  |

#### **Optical MPC**

### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 43

#### 2.5 Geometric Calibration/Validation

#### 2.5.1 OLCI-A

OLCI-A georeferencing performance is compliant since the introduction of MPC Geometric Calibration, put in production on the 14<sup>th</sup> of March 2018. It has however significantly improved after its last full revision of GCMs (Geometric Calibration Models, or platform to instrument alignment quaternions) and IPPVMs (Instrument Pixels Pointing Vectors) both derived using the GeoCal Tool and put in production on 30/07/2019.

The following figures (Figure 44 to Figure 49) show time series of the overall RMS performance (requirement criterion) and of the across-track and along-track biases for each camera. New plots (Figure 50 and Figure 51) introduce monitoring of the performance homogeneity within the field of view: georeferencing errors in each direction at camera transitions (difference between last pixel of camera N and first pixel of camera N+1) and within a given camera (maximum bias minus minimum inside each camera). The performance improvement since the 30/07/2019 is significant on most figures: the global RMS value decreases form around 0.35 to about 0.2 (Figure 44), the across-track biases decrease significantly for all cameras (Figure 45 to Figure 49), the along-track bias reduces for at least camera 3 (Figure 47) and the field of view homogeneity improves drastically (Figure 50 and Figure 51, but also reduction of the dispersion – distance between the ± 1 sigma lines – in Figure 45 to Figure 49).

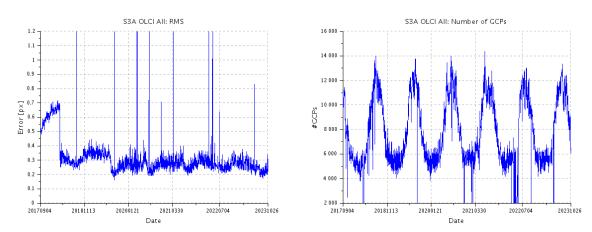



Figure 44: overall OLCI-A georeferencing RMS performance time series (left) and number of validated control points corresponding to the performance time series (right) over the whole monitoring period

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

20231026

Issue: 1.0

Date: 10/11/2023

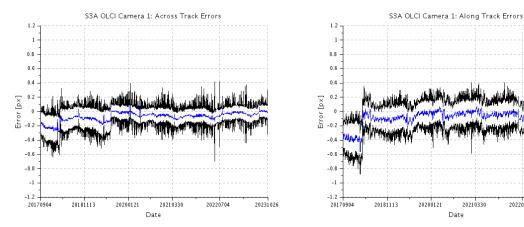



Figure 45: across-track (left) and along-track (right) OLCI-A georeferencing biases time series for Camera 1. Blue line is the average, black lines are average plus and minus 1 sigma.

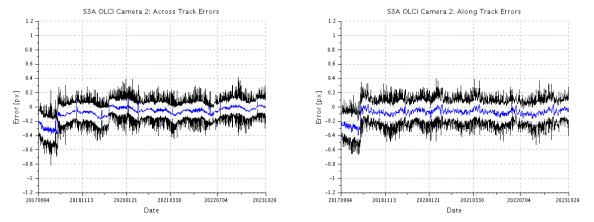



Figure 46: same as Figure 45 for Camera 2.

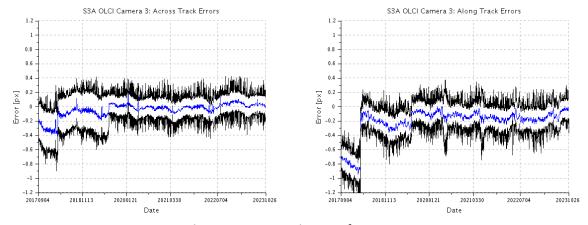
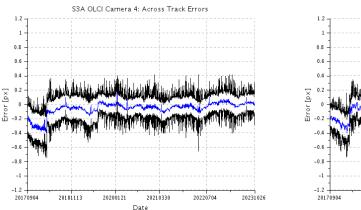



Figure 47: same as Figure 45 for Camera 3.

#### **Optical MPC**


#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023



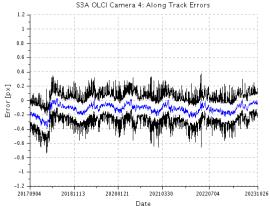
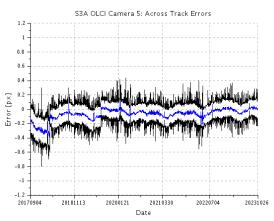




Figure 48: same as Figure 45 for Camera 4.



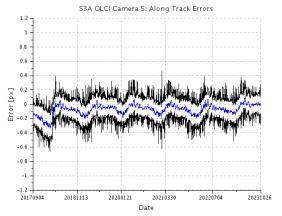
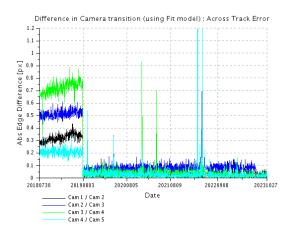




Figure 49: same as Figure 45 for Camera 5.



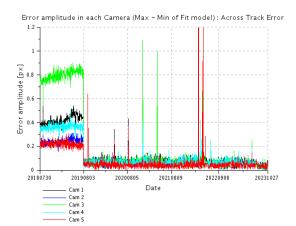
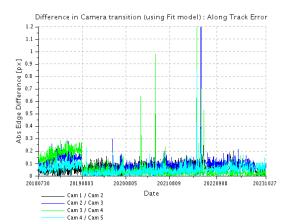



Figure 50: OLCI-A spatial across-track misregistration at each camera transition (left) and maximum amplitude of the across-track error within each camera (left).

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**


October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 46



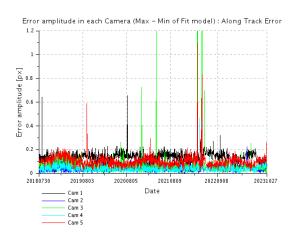



Figure 51: OLCI-A spatial along-track misregistration at each camera transition (left) and maximum amplitude of the along-track error within each camera (left).

#### 2.5.2 OLCI-B

Georeferencing performance of OLCI-B improved significantly with the fourth geometric calibration introduced the 30/07/2019. However, the instrument pointing is still evolving, in particular for camera 2 (Figure 58) and a new geometric calibration has been done and introduced in the processing chain on the 16<sup>th</sup> of April 2020. Its impact is significant on the along-track biases of all cameras (Figure 53 to Figure 57), but also on the continuity at camera interfaces (Figure 58, left) and on intra-camera homogeneity (Figure 58, right). Since then, further adjustments to the geometric calibration have been introduced, mainly to correct the along-track drifts. The most recent was put in production on 29/07/2021 and its effect can be seen e.g. on left graphs of Figure 54, Figure 55 and Figure 57 (across-track biases of cameras 2, 3 & 5).

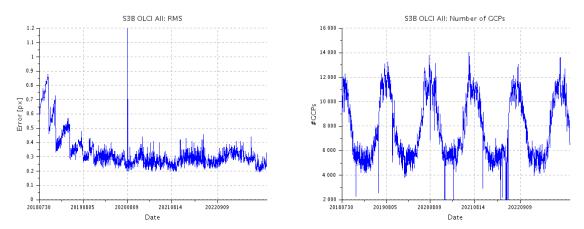
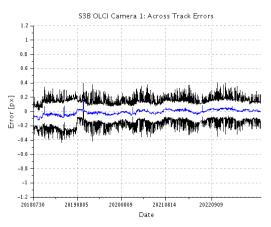



Figure 52: overall OLCI-B georeferencing RMS performance time series over the whole monitoring period (left) and corresponding number of validated control points (right)

#### **Optical MPC**


#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023



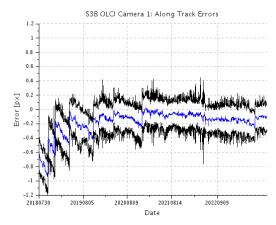
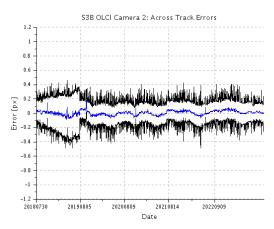




Figure 53: across-track (left) and along-track (right) OLCI-B georeferencing biases time series for Camera 1.



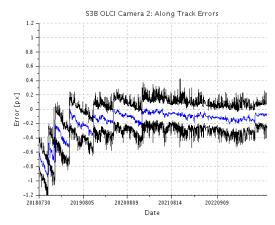
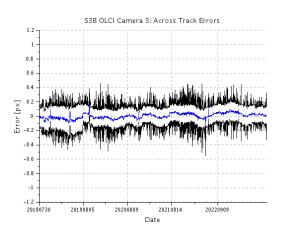




Figure 54: same as Figure 53 for Camera 2.



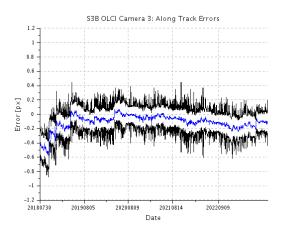
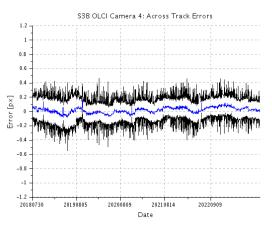



Figure 55: same as Figure 53 for Camera 3.

#### **Optical MPC**


#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023



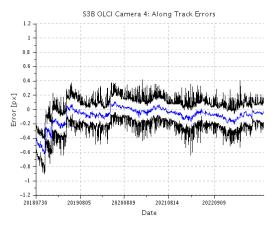
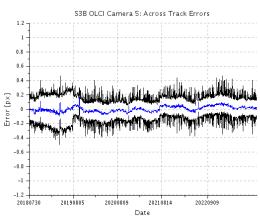




Figure 56: same as Figure 53 for Camera 4.



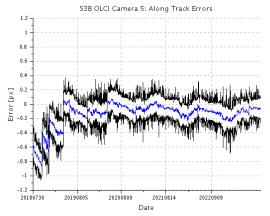
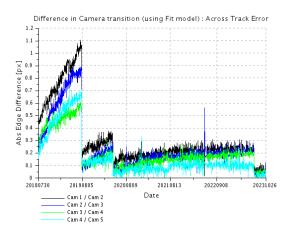




Figure 57: same as Figure 53 for Camera 5.



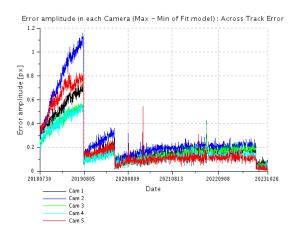
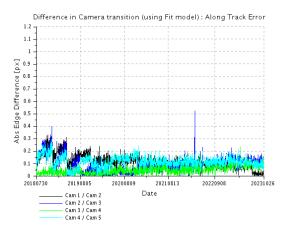



Figure 58: OLCI-B spatial across-track misregistration at each camera transition (left) and maximum amplitude of the across-track error within each camera (left).




#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023



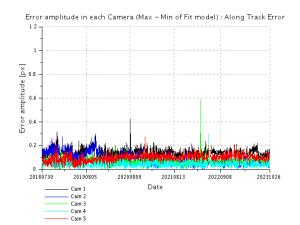



Figure 59: OLCI-B spatial along-track misregistration at each camera transition (left) and maximum amplitude of the along-track error within each camera (left).



Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 50

#### 3 OLCI Level 1 Product validation

#### 3.1 [OLCI-L1B-CV-300], [OLCI-L1B-CV-310] - Radiometric Validation

#### 3.1.1 S3ETRAC Service

#### **Activities done**

The S3ETRAC service extracts OLCI L1 RR and SLSTR L1 RBT data and computes associated statistics over 49 sites corresponding to different surface types (desert, snow, ocean maximizing Rayleigh signal, ocean maximizing sunglint scattering and deep convective clouds). The S3ETRAC products are used for the assessment and monitoring of the L1 radiometry (optical channels) by the ESLs.

All details about the S3ETRAC/OLCI and S3ETRAC/SLSTR statistics are provided on the S3ETRAC website <a href="http://s3etrac.acri.fr/index.php?action=generalstatistics">http://s3etrac.acri.fr/index.php?action=generalstatistics</a>.

- Number of OLCI products processed by the S3ETRAC service
- Statistics per type of target (DESERT, SNOW, RAYLEIGH, SUNGLINT and DCC)
- Statistics per sites
- Statistics on the number of records

For illustration, we provide below statistics on the number of S3ETRAC/OLCI records generated per type of targets (DESERT, SNOW, RAYLEIGH, SUNGLINT and DCC) for both OLCI-A (Figure 60) and OLCI-B (Figure 61).



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

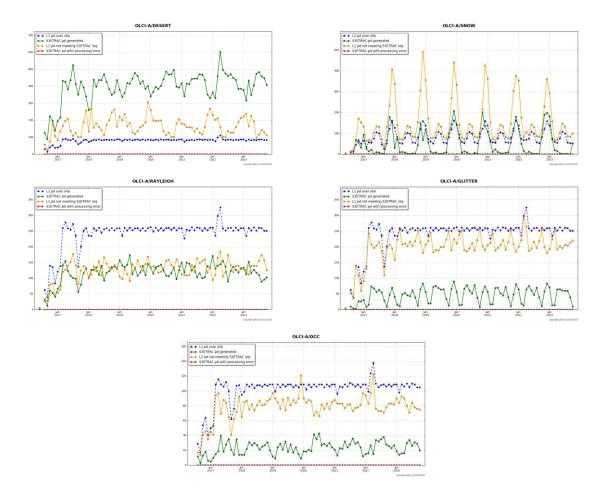



Figure 60: summary of S3ETRAC products generation for OLCI-A

(number of OLCI-A L1 products Ingested, blue – number of S3ETRAC extracted products generated, green – number of S3ETRAC runs without generation of output product (data not meeting selection requirements), yellow – number of runs ending in error, red, one plot per site type).



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 52

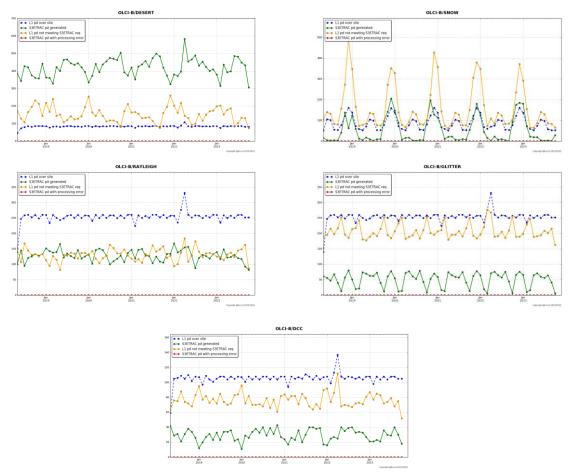



Figure 61: summary of S3ETRAC products generation for OLCI-B

(number of OLCI-B L1 products Ingested, yellow – number of S3ETRAC extracted products generated, blue – number of S3ETRAC runs without generation of output product (data not meeting selection requirements), green – number of runs ending in error, red, one plot per site type).

#### 3.1.2 Radiometric validation with DIMITRI

OLCI-A and OLCI-B L1B radiometry verification has been processed as follow:

- The verification is performed over over Desert-sites until until mid-October 2023.
- The verification is performed over Ocean-sites until end-October 2023.
- All results from OLCI-A and OLCI-B over Rayleigh, Glint and PICS are consistent with the previous reporting period over the used CalVal sites.
- Good stability of both sensors OLCI-A and OLCI-B could be observed, nevertheless the time-series average shows higher reflectance from OLCI-A.
- Bands with high gaseous absorption are excluded.



### Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 53

#### 3.1.2.1 Verification and Validation over PICS

 The ingestion of all the available L1B-LN1-NT products from OLCI-A and OLCI-B over the 6 desert CalVal-sites (Algeria3 & 5, Libya 1 & 4 and Mauritania 1 & 2) has been performed until mid-October 2023.

- 2. The results are consistent over all the six used PICS sites (Figure 62 and Figure 63). Both sensors show a good stability over the analysed period.
- 3. The temporal average over the period **January** mid-October **2023** of the elementary ratios (observed reflectance to the simulated one) for **OLCI-A** shows gain values between 2-4% over all the VNIR bands (Figure 64). Unlikely, the temporal average over the same period of the elementary ratios for **OLCI-B** shows gain values within 2% (mission requirements) over the VNIR spectral range (Figure 64). The spectral bands with significant absorption from water vapor and O<sub>2</sub> (Oa11, Oa13, Oa14, Oa15 and Oa20) are excluded.

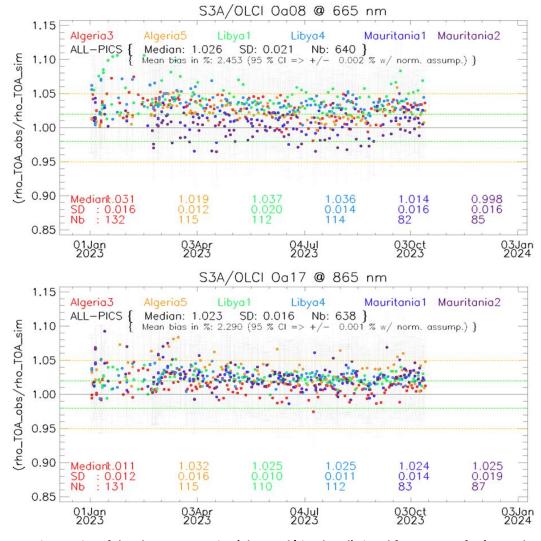



Figure 62: Time-series of the elementary ratios (observed/simulated) signal from OLCI-A for (top to bottom) bands Oa03 and Oa17 respectively over Jan. – mid-Oct. 2023 from the six PICS Cal/Val sites. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty.

# OPT-MPC Page 15 Optical Massion Performance Cluster

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

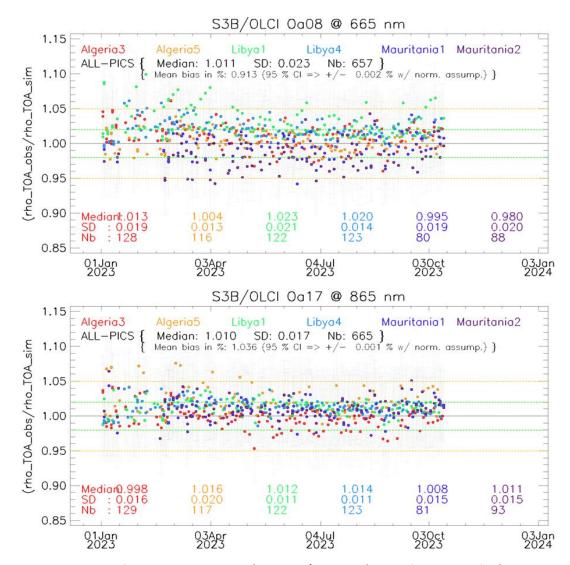



Figure 63: Time-series of the elementary ratios (observed/simulated) signal from OLCI-B for (top to bottom) bands Oa08 and Oa17 respectively over Jan. – mid-Oct 2023 from the six PICS Cal/Val sites. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty.

#### **Optical MPC**

### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 55

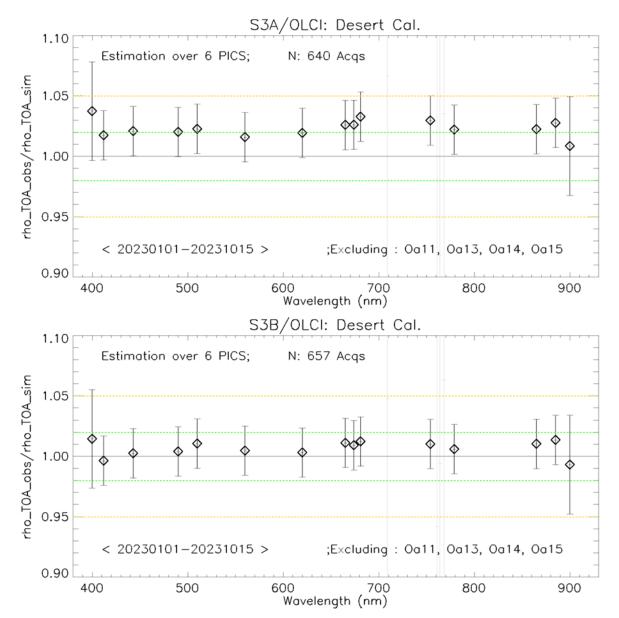



Figure 64: The estimated gain values for OLCI-A and OLCI-B over the 6 PICS sites identified by CEOS over the period January 2023 – mid-October 2023 as a function of wavelength. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the desert methodology uncertainty.

#### 3.1.2.2 Validation over Rayleigh

Rayleigh method has been performed from the available mini-files over the period January 2022 - End October 2023 for OLCI-A and OLCI-B. The results were produced with the configuration (ROI-AVERAGE). The gain coefficients of OLCI-A are consistent with the previous results. Bands Oa01-Oa05 display biases values between 3%-5% while bands Oa06-Oa09 exhibit biases about 2%, just within the mission requirement (Figure 65). The gain coefficients of OLCI-B are lower than OLCI-A ones, where bands Oa01-Oa05 display biases values about 2-5%, when bands Oa6-Oa9 exhibit biases within the 2% mission requirement (Figure 65).

### OPT-MPC Data Qu

### Data Quality Report –Sentinel-3 OLCI October 2023

**Optical MPC** 

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 56

#### 3.1.2.3 Validation over Glint and synthesis

Glint calibration method has been performed over the period January 2022 – end October 2023 for OLCI-A and OLCI-B. The outcome of this analysis shows a good consistency with the desert and Rayleigh outputs over the NIR spectral range Oa06-Oa09 for both sensors. Glint results from OLCI-A show that the NIR bands are within 3% (slightly above the 2% mission requirements), except Oa21 which shows higher biases of about 6% and 4% for both sensors respectively (see Figure 65). Again, the glint gain from OLCI-B looks slightly lower than OLCI-A one with most bands within the 2% mission requirement if ignoring the Rayleigh results in the blue-green region.

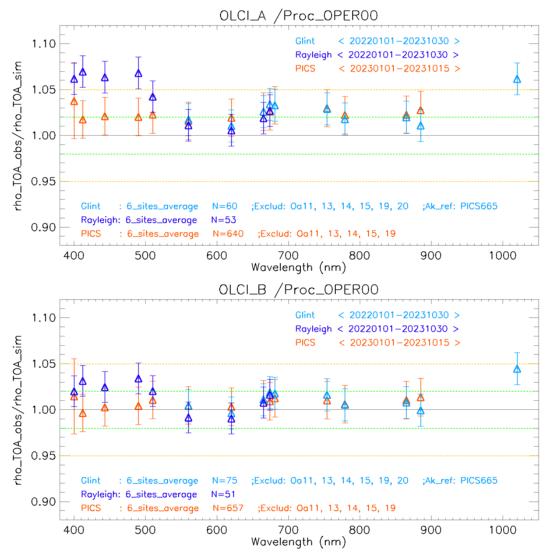



Figure 65: The estimated gain values for OLCI-A and OLCI-B from Glint, Rayleigh and PICS methods over the period January 2022 – end October 2023 as a function of wavelength. We use the gain value of Oa8 from PICS-Desert method as reference gain for Glint method. Dashed-green and orange lines indicate the 2% and 5% respectively. Error bars indicate the method uncertainties.

#### **Optical MPC**

### Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 57

#### 3.1.2.4 Cross-mission Intercomparison over PICS:

X-mission Intercomparison between MERIS, MSI-A, MSI-B, OLCI-A, OLCI-B, SLSTR-A and SLSTR-B has been performed over the 6 PICS-test-sites.

Figure 66 shows the estimated gain over different time-series for different sensors over PICS. The spectral bands with significant absorption from water vapor and O2 are excluded. OLCI-A seems to have higher gain wrt the other sensors (except SLSTR-A/B), and of about 1-3% higher gain wrt to OLCI-B over VNIR spectral range.

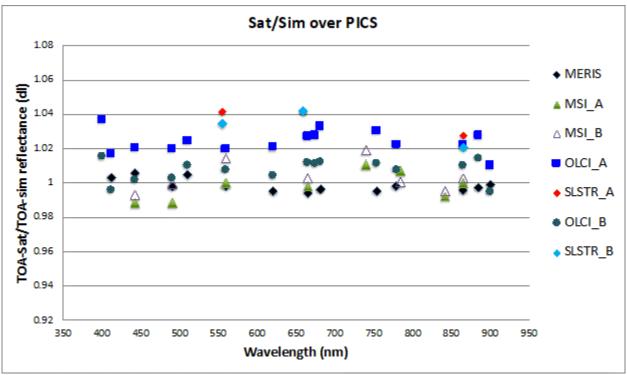



Figure 66: Ratio of observed TOA reflectance to simulated one for (black) MERIS, (pale-green) S2A/MSI, (white) S2B/MSI, (blue) S3A/OLCI, (green) S3B/OLCI, (red) S3A/SLSTR-NADIR, and (cyan) S3B/SLSTR-NADIR averaged over the six PICS test sites over different periods as a function of wavelength.

#### 3.1.3 Radiometric validation with OSCAR

#### 3.1.3.1 OSCAR Rayleigh results

The OSCAR Rayleigh have been applied to the S3A and S3B S3ETRAC data from the 6 oceanic calibration sites (Table 3) using a new chlorophyll climatology which has been derived from the CMEMS OLCI monthly CHL products from considering the years 2017, 2018 and 2019.



#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 58

Table 3: S3ETRAC Rayleigh Calibration sites

| Site Name | Ocean                 | North<br>Latitude | South<br>Latitude | East<br>Longitude | West<br>Longitude |
|-----------|-----------------------|-------------------|-------------------|-------------------|-------------------|
| PacSE     | South-East of Pacific | -20.7             | -44.9             | -89               | -130.2            |
| PacNW     | North-West of Pacific | 22.7              | 10                | 165.6             | 139.5             |
| PacN      | North of Pacific      | 23.5              | 15                | 200.6             | 179.4             |
| AtIN      | North of Atlantic     | 27                | 17                | -44.2             | -62.5             |
| AtIS      | South of Atlantic     | -9.9              | -19.9             | -11               | -32.3             |
| IndS      | South of Indian       | -21.2             | -29.9             | 100.1             | 89.5              |

In Figure 67 the average OSCAR OLCI-A and OLCI-B Rayleigh results are given for October 2023. In Figure 68 and Table 4, the same results are given for all acquisitions of 2023.

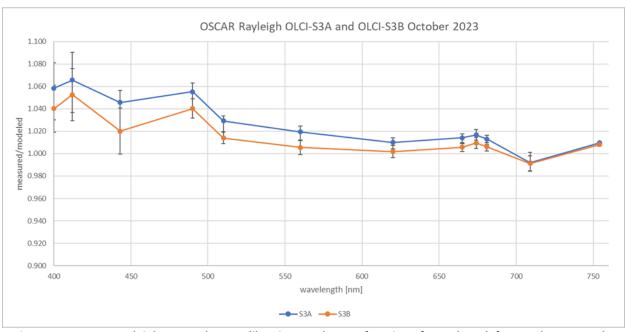



Figure 67: OSCAR Rayleigh S3A and S3B Calibration results as a function of wavelength for October 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products.

# OPT-MPC Particle Mission Performance Cluster

#### **Optical MPC**

#### **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

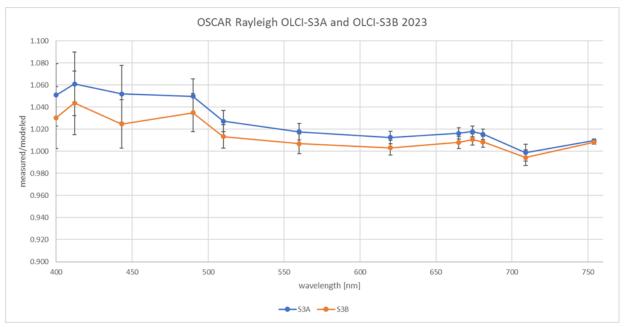



Figure 68: OSCAR Rayleigh OLCI-A and OLCI-B Calibration results as a function of wavelength for all acquisitions of 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products.

Table 4. OSCAR Rayleigh calibration results for S3A and S3B (average and standard deviation over all 2023 acquisitions) over all scenes currently (re)processed with the new climatology and observed difference (in %) between OLCIA and OLCIB

| OLCI | Wavelength | Oscar Rayle | eigh OLCIA | Oscar Rayl | % difference |                 |  |
|------|------------|-------------|------------|------------|--------------|-----------------|--|
| band | (nm)       | avg         | stdev      | avg        | stdev        | OLCIA and OLCIB |  |
| Oa01 | 400        | 1.051       | 0.028      | 1.030      | 0.028        | 1.96%           |  |
| Oa02 | 412        | 1.061       | 0.029      | 1.044      | 0.029        | 1.63%           |  |
| Oa03 | 443        | 1.052       | 0.026      | 1.025      | 0.022        | 2.58%           |  |
| Oa04 | 490        | 1.050       | 0.016      | 1.035      | 0.017        | 1.41%           |  |
| Oa05 | 510        | 1.027       | 0.010      | 1.013      | 0.011        | 1.35%           |  |
| Oa06 | 560        | 1.018       | 0.007      | 1.007      | 0.009        | 1.07%           |  |
| Oa07 | 620        | 1.012       | 0.006      | 1.003      | 0.007        | 0.92%           |  |
| Oa08 | 665        | 1.016       | 0.005      | 1.008      | 0.005        | 0.80%           |  |
| Oa09 | 674        | 1.018       | 0.005      | 1.011      | 0.005        | 0.71%           |  |
| Oa10 | 681        | 1.016       | 0.005      | 1.008      | 0.005        | 0.70%           |  |
| Oa11 | 709        | 0.999       | 0.008      | 0.994      | 0.007        | 0.45%           |  |
| Oa12 | 754        | 1.010       | 0.001      | 1.008      | 0.002        | 0.14%           |  |

#### **Optical MPC**

Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 60

#### 3.1.3.2 OSCAR Glitter results

The OSCAR Glitter have been applied to all S3ETRAC glitter data for October 2023. Both OLCI-A and OLCI-B data was processed. The plots in Figure 69 are the glitter results for OLCI-A and OLCI-B for the period of October 2023 and on Figure 70 for all results of 2023 (also provided in Table 5). The values are in absolute terms, since all bands are referenced to the Rayleigh result of band Oa8. The glitter method is a relative inter-band calibration method, since the Oa8 band is used to estimate windspeed. By multiplying all band results with the Rayleigh calibration factor for the same period, the results are referenced to the results of this method.

For all results of 2023, the difference between OLCI-A and OLCI-B (Table 5, in %) is below 1% for all bands, except for bands Oa04 and Oa05. It also indicates a brighter OLCI-A compared to OLCI-B.

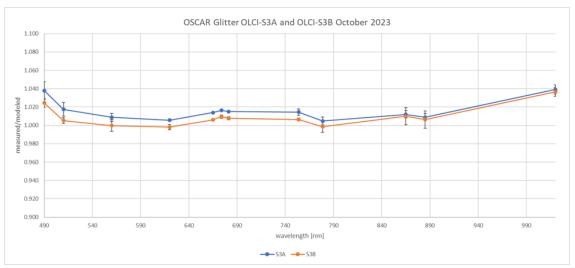



Figure 69: OSCAR Glitter OLCI-A & OLCI-B Calibration results as a function of wavelength for October 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products.

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 61

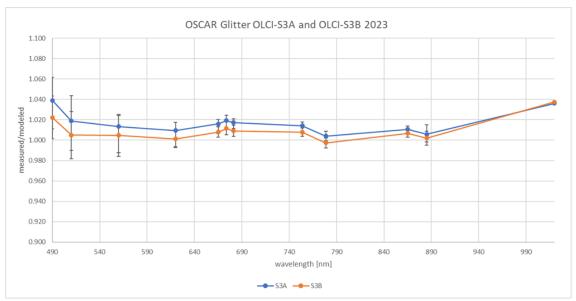



Figure 70: OSCAR Glitter OLCI-A & OLCI-B Calibration results as a function of wavelength for all acquisitions of 2023. The results are obtained with a new climatology derived from CMEMS OLCI monthly CHL products.

Table 5: OSCAR Glitter calibration results for OLCI-A and OLCI-B (average and standard deviation over all acquisitions of 2023) currently processed with the new climatology and observed difference (in %)

| OLCI | Wavelength | Oscar Glitter OLCIA |       | Oscar Glit | % difference |                 |
|------|------------|---------------------|-------|------------|--------------|-----------------|
| band | (nm)       | avg                 | stdev | avg        | stdev        | OLCIA and OLCIB |
| Oa04 | 490        | 1.039               | 0.007 | 1.022      | 0.006        | 1.63%           |
| Oa05 | 510        | 1.019               | 0.005 | 1.005      | 0.004        | 1.38%           |
| Oa06 | 560        | 1.013               | 0.003 | 1.005      | 0.003        | 0.85%           |
| Oa07 | 620        | 1.009               | 0.002 | 1.001      | 0.002        | 0.80%           |
| Oa08 | 665        | 1.016               | 0.000 | 1.008      | 0.000        | 0.79%           |
| Oa09 | 673.75     | 1.019               | 0.001 | 1.011      | 0.001        | 0.78%           |
| Oa10 | 681.25     | 1.017               | 0.001 | 1.009      | 0.001        | 0.80%           |
| Oa12 | 753.75     | 1.014               | 0.004 | 1.008      | 0.003        | 0.64%           |
| Oa16 | 778.75     | 1.004               | 0.003 | 0.997      | 0.003        | 0.67%           |
| Oa17 | 865        | 1.011               | 0.006 | 1.007      | 0.004        | 0.39%           |
| Oa18 | 885        | 1.006               | 0.008 | 1.002      | 0.006        | 0.38%           |
| Oa21 | 1020       | 1.036               | 0.009 | 1.038      | 0.007        | -0.13%          |

## 3.1.4 Radiometric validation with Moon observations: LIME results

There have been no new results during the reporting period. The latter figures (reported in <u>OLCI Data Quality Report covering September 2023</u>) are considered valid.

## **Optical MPC**

Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 62

# 4 Level 2 Land products validation

# 4.1 [OLCI-L2LRF-CV-300]

## 4.1.1 Routine extractions

- The focus for this time period has been on the rolling archive Non Time Critical (NT) data until the 31<sup>st</sup> of October 2023. More data available for statistical analysis as a concatenation procedure for all available data in the MERMAID processing has been implemented.
- Concatenated time series of OLCI Global Vegetation Index and OLCI Terrestrial Chlorophyll Index have been regenerated on the current rolling archive availability including previous extractions since June 2016 and April 2018 for S3A and S3B respectively.

## 4.1.1.1 OLCI-A

Figure 71 to Figure 80 below present the Core Land Sites OLCI-A time series over the current period.

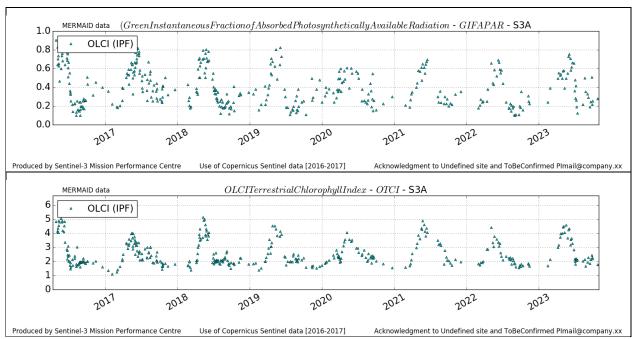



Figure 71: DeGeb time series over current report period

# OPT-MPC Pulling Supplies Million Performance Cluster Capital Million Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

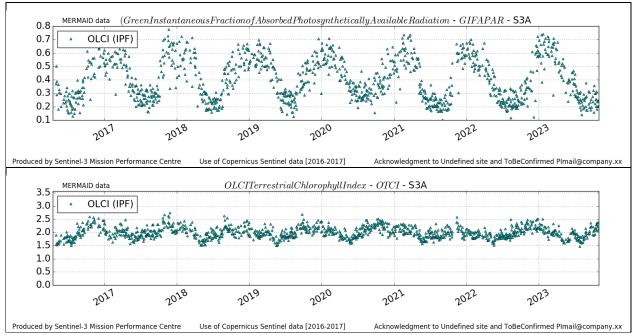



Figure 72: ITCat time series over current report period

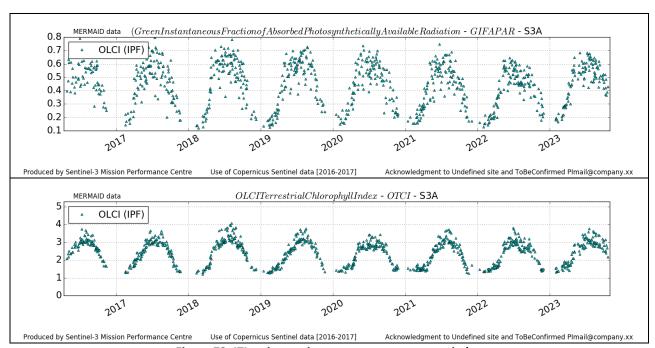



Figure 73: ITIsp time series over current report period

# OPT-MPC Property of the control of

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

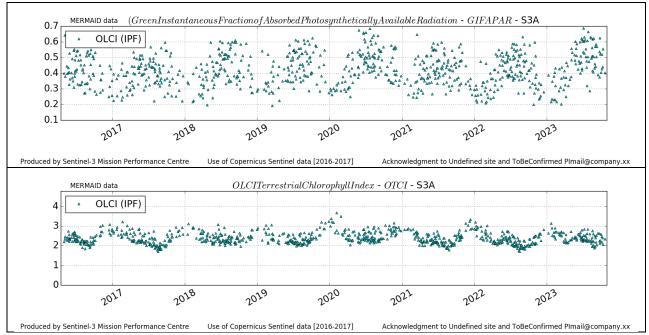



Figure 74: ITSro time series over current report period

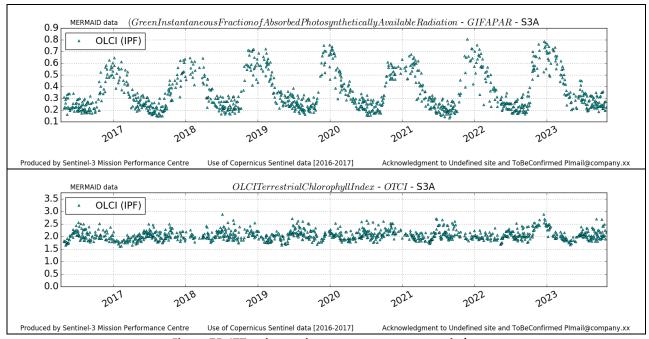



Figure 75: ITTra time series over current report period

# OPT-MPC Pulpul Mixion Performance Cluster Optical Mixion Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

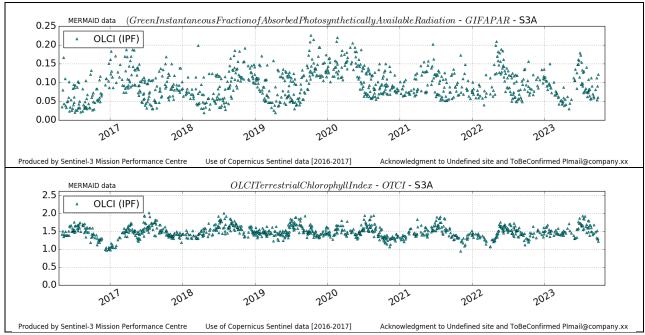



Figure 76: SPAli time series over current report period

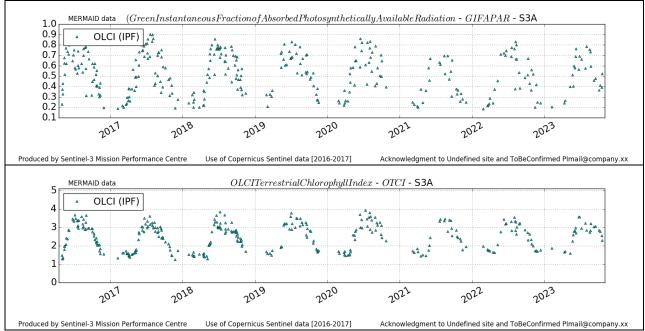



Figure 77: UKNFo time series over current report period

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

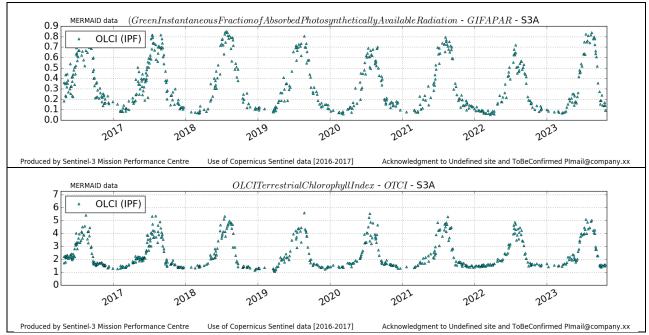



Figure 78: USNe1 time series over current report period

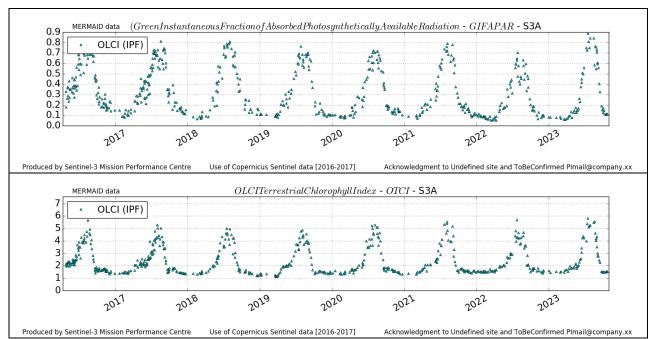



Figure 79: USNe2 time series over current report period

# OPT-MPC Pullus Control Million Performance Cluster Copical Million Performance Cluster

# **Optical MPC**

# Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 67

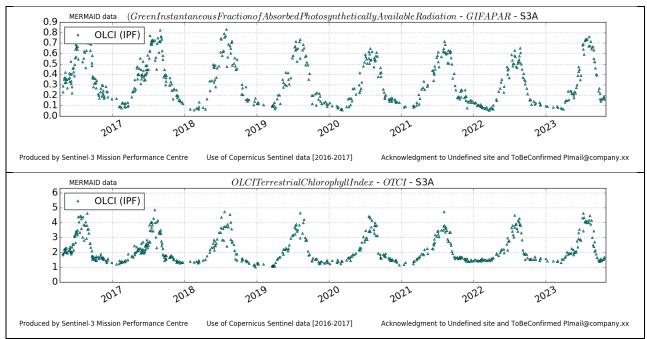



Figure 80: USNe3 time series over current report period

# 4.1.1.2 OLCI-B

Figure 81 to Figure 90 below present the Core Land Sites OLCI-B time series over the current period.

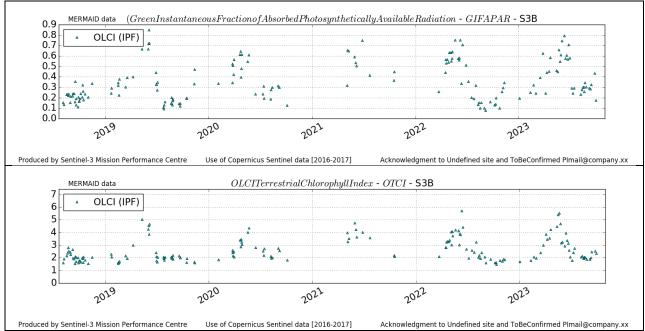



Figure 81: DeGeb time series over current report period

# OPT-MPC Optical Minison Performance Cluster Op

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

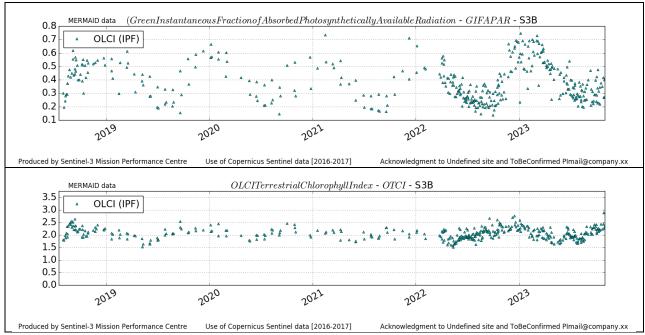



Figure 82: ITCat time series over current report period

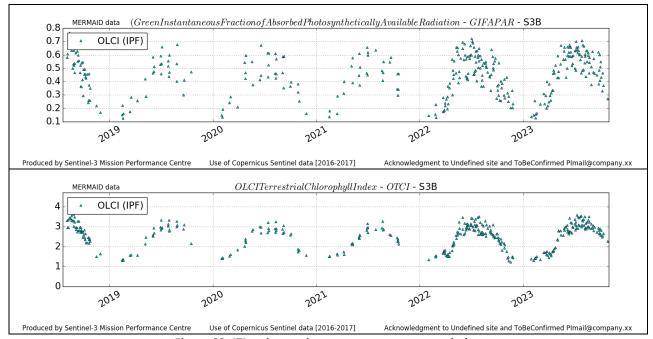



Figure 83: ITIsp time series over current report period

# OPT-MPC Pulpul Mixion Performance Cluster Optical Mixion Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

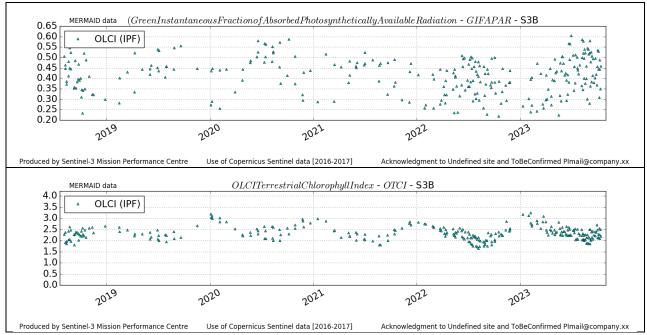



Figure 84: ITSro time series over current report period

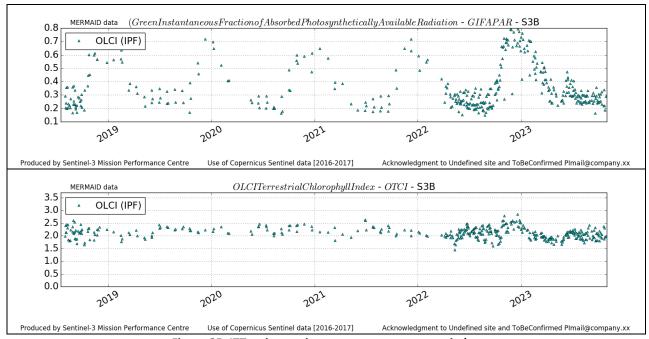



Figure 85: ITTra time series over current report period

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

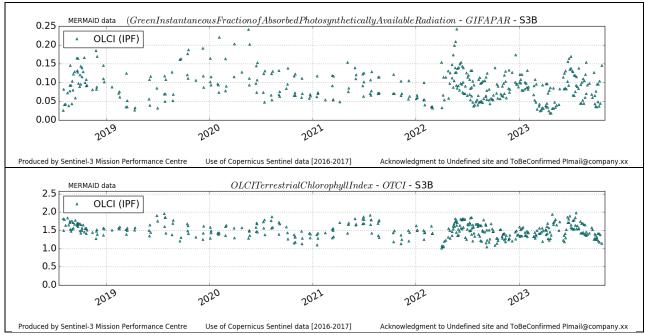



Figure 86: SPAli time series over current report period

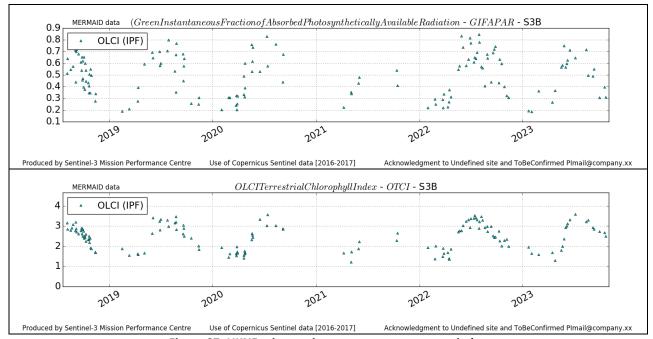



Figure 87: UKNFo time series over current report period

# OPT-MPC Paulus Variation Performance Cluster Optical Mission Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

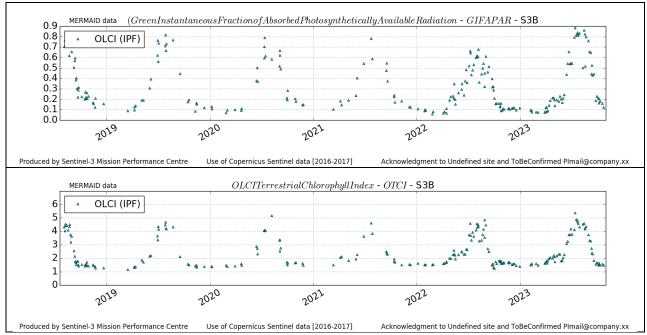



Figure 88: USNe1 time series over current report period

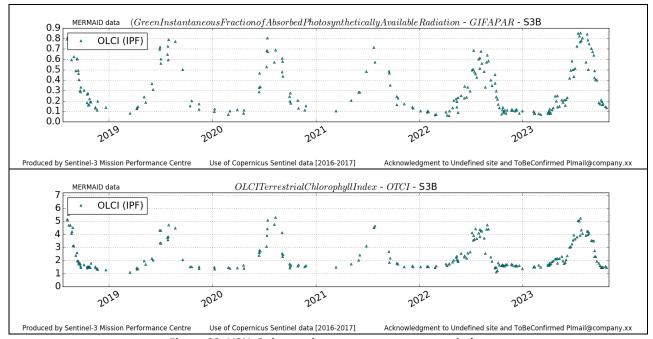



Figure 89: USNe2 time series over current report period

# **Optical MPC**

# Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 72

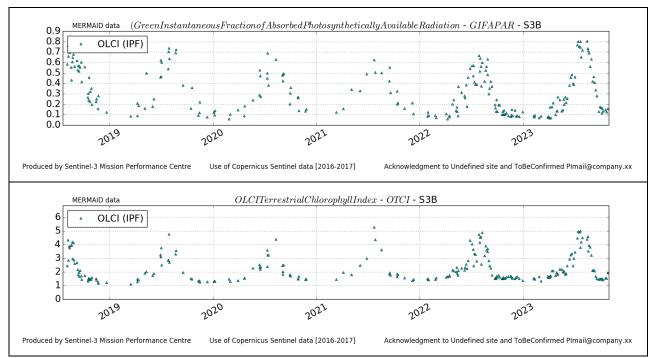



Figure 90: USNe3 time series over current report period

# 4.1.2 Comparisons with MERIS MGVI and MTCI climatology

This section presents the main results of comparing the Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) and the Envisat MERIS Terrestrial Chlorophyll Index (MTCI). The validation covers from 1<sup>st</sup> January 2022 to 30<sup>th</sup> of October 2023 over a selection of sites from the S3VT (*Sentinel-3 Validation Team*), CEOS (*Committee for Earth Observation Satellites*) and GBOV (*Ground-Based Observations for Validation*) sites. The sites are distributed across different latitudes and encompass various representative land cover types (Table 6). The analysis relies on monthly L3 Envisat MTCI composites at 1 km spatial resolution, sourced from the UK Centre for Environmental Data Analysis (CEDA). GIFAPAR is compared against MERIS FAPAR climatology (MGVI – MERIS Ve over 2003-2011 at 1.2 km. The 15-day smoothed product from daily data is sourced by the Joint Research Centre (Gobron *et al.*, 2020).

Figure 91 exhibits the seasonal trends and scatterplots depicting the monthly averages for the period 2002-2012 (*MGVI – MERIS Global Vegetation Index*), 2022 GIFAPAR (blue), and 2023 GIFAPAR (red) at selected sites for S3A and S3B. The profiles show that the GIFAPAR seasonality overlaps well with MGVI climatology (R²>0.5; NRMS<0.2 for almost all sites). In Central Plain Grasslands and USNe1, inter-annual variations (2022 vs 2023) may be due to different climatic conditions. OTCI also strongly agrees with MTCI (Figure 92), R²>0.47, NRMSD<0.2 for S3A and R²>0.44, NRMSD<0.2 for S3B. This indicates its ability to maintain continuity in the 10-year MERIS archive and provide confidence in its performance.

# OPT-MPC Paulous Department of Linter Optical Mission Performance Cluster

# **Optical MPC**

# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 73

# Table 6: S3VT, CEOS and GBOV validation sites analysed.

| Name                                    | Country                | LAT             | LON            | IGBP                                               |
|-----------------------------------------|------------------------|-----------------|----------------|----------------------------------------------------|
|                                         |                        |                 |                |                                                    |
| Sp-Ala                                  | Spain                  | 38.45           | -1.06          | Semi-arid Mediterranean                            |
| AUS-Alice Mulga                         | Australia              | -22.28          | 133.25         | Evergreen Needleleaf                               |
| FR-Aurade                               | France                 | 43.54           | 1.10           | Croplands Mixed Facest                             |
| US-Bartlett                             | United States          | 44.06           | -71.287        | Mixed Forest                                       |
| US-Blandy                               | United States          | 39.06           | -78.07         | Deciduous Broadleaf                                |
| CZ-Bily Kriz forest                     | Czechia                | 49.50           | 18.53          | Evergreen Needleleaf                               |
| BE-Brasschaat                           | Belgium                | 51.30<br>-34.00 | 4.51<br>140.58 | Evergreen Needleleaf Shrubland                     |
| AUS-Calperum Malle AUS-Cape Tribulation | Australia<br>Australia | -16.10          | 145.37         | Evergreen Needleleaf                               |
| It-Castelporziano                       | Italy                  | 41.70           | 12.35          | Mixed Forest                                       |
| It-Cat                                  | Italy                  | 37.27           | 14.88          | Croplands (Orange)                                 |
| US-Central Plains                       | United States          | 40.815          | -104.74        | Grasslands                                         |
| IT-CollelongoITALY                      | Italy                  | 41.84           | 13.58          | Deciduous Broadleaf broadleaved, deciduous, closed |
| AUS-Cumberland Plain                    | Australia              | -33.61          | 150.72         | Evergreen Broadleaf                                |
| US-Dead Lake                            | United States          | 32.54172        | -87.8039       | Mixed Forest                                       |
| US-Disney                               | United States          | 28.12504        | -81.4363       | Shrublands                                         |
| FR-Estrees                              | France                 | 49.87           | 3.02           | Croplands                                          |
| De-Geb                                  | Deutschland            | 51.10           | 10.91          | Croplands                                          |
| US-Guanica                              | United States          | 17.96           | -66.868        | Mixed Forest                                       |
| AUS-Great Western                       | Australia              | -30.19          | 120.65         | Shrublands                                         |
| GE-Hainich                              | Germany                | 51.07           | 10.45          | Mixed Forest                                       |
| US-Harvard                              | United States          | 42.53           | -72.17         | Mixed Forest                                       |
| FR-Hesse                                | France                 | 48.67           | 7.06           | Deciduous Broadleaf                                |
| DE-Hones Holtz                          | Deutschland            | 52.08           | 11.22          | Deciduous Broadleaf                                |
| It-Isp                                  | Italy                  | 45.81           | 8.63           | Mixed Forest                                       |
| US-Jones                                | United States          | 31.19           | -84.46         | Evergreen Needleleaf                               |
| US-Jornada                              | United States          | 32.59           | -106.84        | Open shrubland                                     |
| US-Konza                                | United States          | 39.11           | -96.61         | Croplands                                          |
| US-Lajas                                | United States          | 18.02           | -67.07         | Grasslands                                         |
| IT-Lison                                | Italy                  | 45.74           | 12.75          | Croplands                                          |
| AUS-Litchfield                          | Australia              | -13.18          | 130.79         | Evergreen Broadleaf                                |
| NE-Loobos                               | Netherlands            | 52.16           | 5.74           | Evergreen Needleleaf                               |
| US-Moab                                 | United States          | 38.24           | -109.38        | Shrublands                                         |
| FR-Montiers                             | France                 | 48.53           | 5.31           | Deciduous Broadleaf                                |
| US-Mountain Lake                        | United States          | 37.37           | -80.52         | Deciduous Broadleaf                                |
| US-Niwot                                | United States          | 40.05           | -105.58        | Evergreen Needleleaf                               |
| US-Oak                                  | United States          | 35.96           | -84.28         | Mixed Forest                                       |
| US-Onaqui                               | United States          | 40.17           | -112.45        | Shurblands                                         |
| US-Ordway                               | United States          | 29.68           | -81.9934       | Evergreen Needleleaf                               |
| FR-Puechabon                            | France                 | 43.74           | 3.59           | Evergreen Needleleaf                               |
| AUS-Robson Creek                        | Australia              | -17.11          | 145.63         | Mixed Forest                                       |
| AUS-Rushworth                           | Australia              | -36.75          | 144.96         | Deciduous Broadleaf                                |
| DE-Selhausen                            | Deutschland            | 50.86           | 6.44           | Cropland                                           |
| US-Smithsonian Conservation             |                        |                 |                | ·                                                  |
| Biology (SCBI)                          | United States          | 38.89           | -78.13         | Mixed Forest                                       |
| US-Smithsonian Environmental (SERC)     | United States          | 38.89           | -76.56         | Croplands                                          |
| US-Steigerwaldt                         | United States          | 45.50           | -89.58         | Deciduous Broadleaf                                |
| It-Sro                                  | Italy                  | 43.72           | 10.28          | Pinus Pinea                                        |
| US-Talladega                            | United States          | 32.95           | -87.39         | Evergreen Needleleaf                               |
| DE-Tharandt                             | Deutschland            | 50.96           | 13.56          | Evergreen Needleleaf                               |
| It-Tra                                  | Italy                  | 37.64           | 12.85          | Croplands (Vineyards and olive trees)              |
| AUS-Tumbarumba                          | Australia              | -35.65          | 148.15         | Evergreen Broadleaf                                |
| USNe1                                   | United States          | 41.165          | -96.47         | Croplands                                          |
| USNe2                                   | United States          | 41.16           | -96.47         | Croplands                                          |
| USNe3                                   | United States          | 41.17           | -96.43         | Croplands                                          |
| Sp- Valencia                            | Spain                  | 39.57           | -1.28          | Croplands                                          |
| BE-Vielsalm                             | Belgium                | 50.30           | 5.99           | Evergreen Needleleaf                               |
| AUS-Warra Tall                          | Australia              | -43.09          | 146.65         | Evergreen Broadleaf                                |
| AUS-Watts Creek                         | Australia              | -37.68          | 145.68         | Evergreen Broadleaf                                |
| US-Woodworth                            | United States          | 47.12           | -99.24         | Grasslands                                         |
| AUS-Wombat                              | Australia              | -37.42          | 144.09         | Evergreen Broadleaf                                |
| AUS-Zig zag                             | Australia              | -37.42          | 148.33         | Evergreen Broadleaf                                |
| 700 FIE TOP                             | Australia              | 31.71           | 140.33         | Everbreen produied                                 |

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

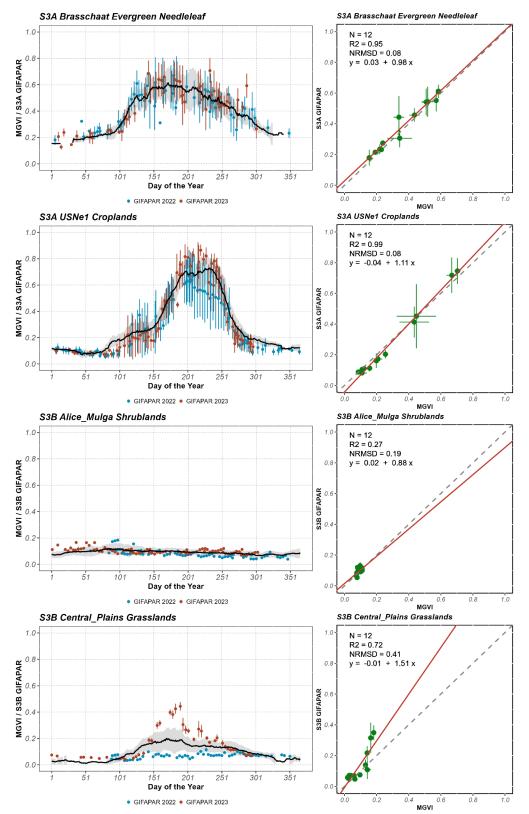



Figure 91: Time series (left) of GIFAPAR and MGVI and a corresponding scatterplot of the monthly mean for site Brasschaat and USNe1 (representing S3A) and Alice and Central Plain (representing S3B). The climatology of MERIS FAPAR (black and grey colours) is compared against 2022 (blue colours) and 2023 (red colours).

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

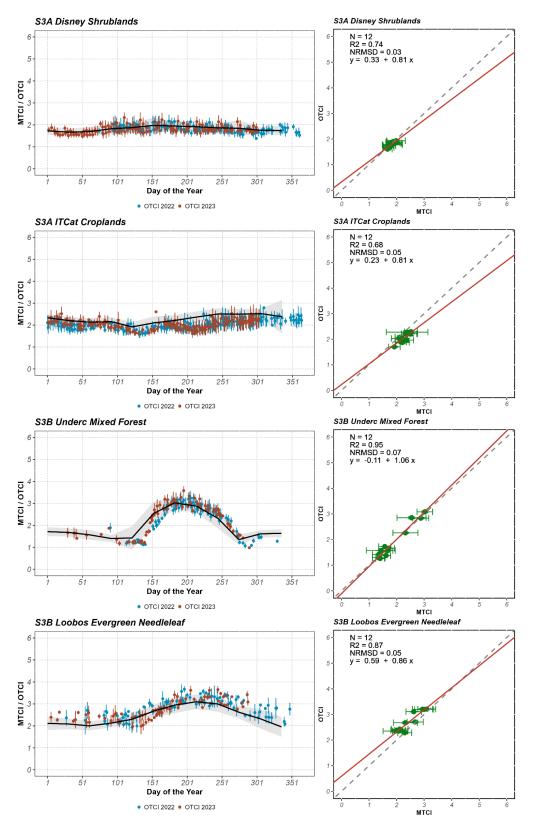



Figure 92: Time series (left) of OTCI and MTCI and a corresponding scatterplot of the monthly mean for site Disney and ITCat (representing S3A) and Underc and Loobos (representing S3B). The climatology of MERIS MTCI (black and grey colours) is compared against 2022 (blue colours) and 2023 (red colours).



# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 76

# 4.1.3 Comparison with GBOV (Ground-Based Observations for Validation) data v3

There have been no new results during the reporting period. The latter figures (reported in the OLCI Data Quality Report covering <u>August 2023</u>) are considered valid.

# 4.1.4 Sentinel-3A and 3B biophysical variables inter-annual variability results

There have been no new results during the reporting period. The latter figures (reported in the OLCI Data Quality Report covering <u>September 2023</u>) are considered valid.

# 4.2 [OLCI-L2LRF-CV-410 & OLCI-L2LRF-CV-420] — Cloud Masking & Surface Classification for Land Products

For the October 2023 reporting the prototype validation results for OLCI cloud mask using sky cameras (SC) are based on two sites, currently validated independently. The two sites are located at La Sapienza University in Rome, Italy and at the University of Valencia in Spain.

For the Rome site the validation was switched to SC 2, due to some instabilities in azimuth location of SC1. Meaning, the camera rotated horizontally over time.

The coordinates of SC 2 at La Sapienza University are:

Lat: 41.90148

Lon: 12.51575

The coordinates of the location of SC 1 at University of Valencia are:

Lat: 39.50832

Lon: -0.42084

The sun being close to nadir in the SC image still leads to some overestimation of clouds in the SC data. A method to hopefully reduce this effect is currently still under development.

# **4.2.1** Sky Camera based validation – prototype results September 2023

## 4.2.1.1 Rome

Figure 97 and Figure 98 show the prototype validation results for the Rome site in September 2023. The weather in October around Rome is mostly dry, with roughly 70% cloudy days and rainfall on 2 days. (see Figure 93 and Figure 94).

# OPT-MPC Page 10 Performance Cluster Optical Mission Performance Cluster

night +16°

# **Optical MPC**

## **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 77

### October Mon Tue Wed Thu Fri Sat Sun 1 +29° night+18° 2 3 4 5 6 7 8 **6**33 +29° +30° +28° +28° +28° +28° +30° night+16° night +18° night +17° night +19° night +18° night +18° night+17° 9 15 10 11 12 13 14 **1 6**3 +31° +32° +29° +29° +27° +27° +26° night +17° night+18° night +17° night +17° night +17° night+15° night+19° 17 20 22 16 18 19 21 S. **63**3 43 +21° +23° +22° +26° +28° +20° +23° night +18° night+17° night +17° night +17° night +21° night+19° night+16° 23 24 25 26 27 28 29 AB. +23° +22° +22° +24° +25° +23° +23° night+16° night +17° night+15° night+14° night+16° night +18° night +18° 30 31 Sas. +26° night +20°

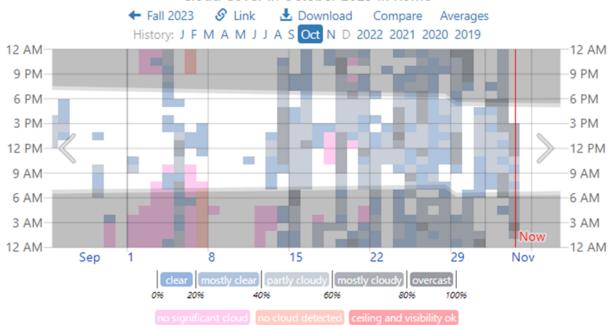
Figure 93: Temperature and cloud cover Rome, October 2023 (source: <a href="https://world-weather.info/forecast/italy/rome/October-2023/">https://world-weather.info/forecast/italy/rome/October-2023/</a>)

# OPT-MPC Optical Mission Performance Cluster

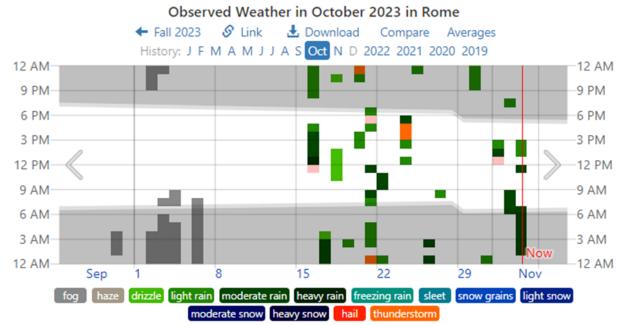
# **Optical MPC**

# Data Quality Report –Sentinel-3 OLCI

October 2023


Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0


Date: 10/11/2023

Page: 78

# Cloud Cover in October 2023 in Rome



The hourly reported cloud coverage, categorized by the percentage of the sky covered by clouds.



The hourly observed weather, color coded by category (in order of severity). If multiple reports are present, the most severe code is shown.

Figure 94: Cloud observations and precipitation Rome, October 2023 (source: https://weatherspark.com/h/m/71779/2023/6/Historical-Weather-in-October-2023-in-Rome-Italy)



# Data Quality Report –Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 79

Since March 2023 a new method was introduced to automatically remove all matchups between the SC images and the OLCI observation with OZA above 30°.

For unknown reasons (until now), the sky camera data transfer for the Rome sky cameras, between University of Maryland and Brockmann, was interrupted after 23<sup>rd</sup> of October and is not yet fixed. Therefore, only data until 23<sup>rd</sup> of October can be compared. In October, there have been 15 acquisitions (matching the sky camera acquisitions) below 30 degree OZA. As shown in the previous months, the high sun elevations in combination with no physical shading device on the sky cameras leads to high sun interference. In October, this is still the case and hopefully will reduce during the winter months. It is obvious that there are at least 7 clear observations (some others are debatable, due to thin cirrus clouds). Nevertheless, the final sky camera classification will identify none of these clear observations, which makes the reference completely cloud sky biased and in turn the validation results simply wrong. A retraining of the classifier seems to be required, to overcome this issue.

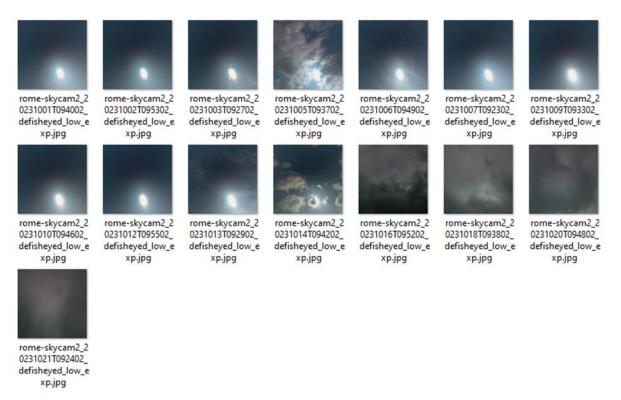



Figure 95: Sky camera acquisitions over Rome during Sentinel-3 OLCI overpass

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

1.0 Issue:

10/11/2023 Date:

80 Page:



defisheyed\_low\_e xp\_NN.png

rome-skycam2\_2

0231010T094602

defisheyed\_low\_e



0231002T095302 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231012T095502 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231003T092702\_ defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231013T092902 defisheyed\_low\_e xp\_NN.png



rome-skycam2 2 0231005T093702 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231014T094202 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231006T094902 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231016T095202\_ defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231007T092302 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231009T093302 defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231018T093802\_ defisheyed\_low\_e xp\_NN.png



rome-skycam2\_2 0231020T094802 defisheyed\_low\_e xp\_NN.png



xp\_NN.png

Figure 96: Classified sky camera acquisitions over Rome during Sentinel-3 OLCI overpass

The confusion matrix in Figure 97 shows the validation results for the OLCI cloud flags including the margin. Only OLCI observations with a OZA below 30 have been considered to lower the influence of parallax between the OLCI observation and the SC observation. As explained above there is a complete cloud bias in the reference data, which in turn leads to wrong validation results.

Overall, it can be stated that the L2 cloud flagging is stable, and deviations are caused by unreliable SC classifications, due to high sun elevations.

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 81

Rome SC 2 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous & Margin October 2023 Sky Camera 1

|        | Class | Clear | Cloud | Sum | U A   | E     |
|--------|-------|-------|-------|-----|-------|-------|
|        | CLEAR | 0     | 9     | 9   | 0.0   | 100.0 |
| L2 LFR | CLOUD | 0     | 6     | 6   | 100.0 | 0.0   |
| OLCI I | Sum   | 0     | 15    | 15  |       |       |
|        | РΑ    | 0     | 40.0  |     | OA:   | 40.0  |
|        | E     | 100   | 60.0  |     | BOA:  | 20.0  |

Scotts Pi: -0.428 Krippendorfs alpha: -0.38 Cohens kappa: 0.0

Figure 97: Confusion matrix showing validation results for OLCI L2 cloud screening including margin against SC1 automated classification.

Rome SC 2 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous October 2023 Sky Camera 1

|         | Class | Clear | Cloud | Sum | U A   | E     |
|---------|-------|-------|-------|-----|-------|-------|
|         | CLEAR | 0     | 10    | 10  | 0.0   | 100.0 |
| -2 LFR  | CLOUD | 0     | 5     | 5   | 100.0 | 0.0   |
| OLCI L2 | Sum   | 0     | 15    | 15  |       |       |
|         | РΑ    | 0     | 33.3  |     | OA:   | 33.33 |
|         | E     | 100   | 66.7  |     | BOA:  | 16.65 |

Scotts Pi: -0.5 Krippendorfs alpha: -0.449 Cohens kappa: 0.0

Figure 98: Confusion matrix showing validation results for OLCI L2 cloud screening excluding margin against SC1 automated classification.



# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 82

When classifying the SC data manually, the performance of the OLCI cloud flag is 100% correct when using the margin (see Figure 99) and misses only one acquisition when only using the Cloud and Ambiguous flag (see Figure 100).

Rome SC 2 manual classif. vs. OLCI L2 LFR Cloud & Ambiguous & Margin October 2023 Sky Camera 1

|         | Class | Clear | Cloud | Sum | U A   | E     |
|---------|-------|-------|-------|-----|-------|-------|
|         | CLEAR | 9     | 0     | 9   | 100.0 | 0.0   |
| -2 LFR  | CLOUD | 0     | 6     | 6   | 100.0 | 0.0   |
| OLCI L2 | Sum   | 9     | 6     | 15  |       |       |
|         | РΑ    | 100.0 | 100.0 |     | OA:   | 100.0 |
|         | E     | 0.0   | 0.0   |     | BOA:  | 100.0 |

Scotts Pi: 1.0 Krippendorfs alpha: 1.0 Cohens kappa: 1.0

Figure 99: Confusion matrix showing validation results for OLCI L2 cloud screening including margin against SC1 manual classification.

Rome SC 2 manual classif. vs. OLCI L2 LFR Cloud & Ambiguous October 2023 Sky Camera 1

| ĸ.          | Class | Clear | Cloud | Sum | U A   | E     |
|-------------|-------|-------|-------|-----|-------|-------|
|             | CLEAR | 9     | 1     | 10  | 90.0  | 10.0  |
| OLCI L2 LFR | CLOUD | 0     | 5     | 5   | 100.0 | 0.0   |
| OLCI L      | Sum   | 9     | 6     | 15  |       |       |
|             | PΑ    | 100.0 | 83.3  |     | OA:   | 93.33 |
|             | E     | 0.0   | 16.7  |     | BOA:  | 91.65 |

Scotts Pi: 0.856 Krippendorfs alpha: 0.861 Cohens kappa: 0.857

Figure 100: Confusion matrix showing validation results for OLCI L2 cloud screening excluding margin against SC1 manual classification.

# OPT-MPO

# **Optical MPC**

**Data Quality Report - Sentinel-3 OLCI** 

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 83

# 4.2.1.2 Valencia

Figure 105 and Figure 106 show the prototype validation results for the Valencia site in October 2023. The weather in October around Valencia is still very arid, with about 50% cloud covered days (see Figure 101).

# October

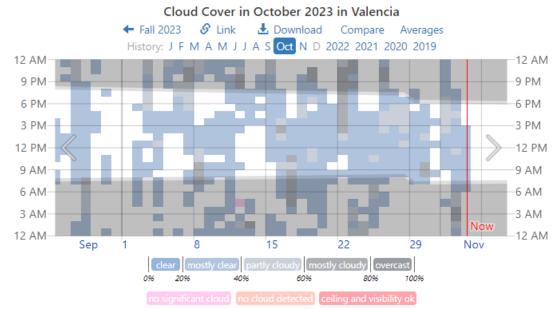
| Mon               | Tue                | Wed                | Thu                | Fri                | Sat               | Sun               |
|-------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|
|                   |                    |                    |                    |                    |                   | 1                 |
|                   |                    |                    |                    |                    |                   | +31°              |
| 2                 | 3                  | 4                  | 5                  | 6                  | 7                 | 8                 |
|                   |                    |                    |                    |                    |                   |                   |
| +28°<br>night+19° | +27°<br>night+20°  | +27°<br>night +21° | +27°<br>night+20°  | +28°<br>night+19°  | +27°<br>night+19° | +26°<br>night+19° |
| 9                 | 10                 | 11                 | 12                 | 13                 | 14                | 15                |
| 6                 |                    |                    |                    |                    |                   |                   |
| +25°<br>night+18° | +26°<br>night+17°  | +25°<br>night +18° | +26°<br>night+18°  | +27°<br>night+18°  | +27°<br>night+18° | +25°<br>night+19° |
| 16                | 17                 | 18                 | 19                 | 20                 | 21                | 22                |
|                   |                    |                    |                    |                    |                   |                   |
| +27°<br>night+20° | +25°<br>night +20° | +28°<br>night +19° | +26°<br>night +22° | +22°<br>night+19°  | +20°<br>night+16° | +20°<br>night+12° |
| 23                | 24                 | 25                 | 26                 | 27                 | 28                | 29                |
|                   |                    |                    |                    |                    |                   |                   |
| +24°<br>night+18° | +22°<br>night+18°  | +25°<br>night+18°  | +26°<br>night+21°  | +22°<br>night +21° | +24°<br>night+18° | +24°<br>night+16° |
| 30                | 31                 |                    |                    |                    |                   |                   |
| +23°<br>night+16° | night+15°          |                    |                    |                    |                   |                   |

Figure 101: Temperature and cloud cover Valencia, October 2023 (source: <a href="https://world-weather.info/forecast/spain/valencia/October-2023/">https://world-weather.info/forecast/spain/valencia/October-2023/</a>)

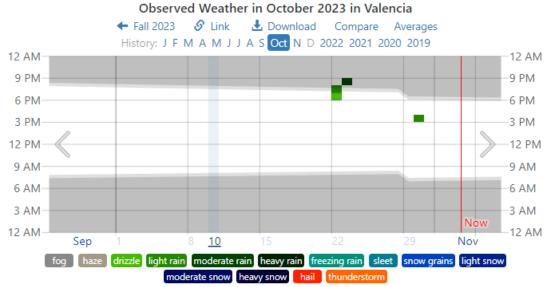
# OPT-MPC Page 10 Pt Optical Mission Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**


October 2023

Ref.: OMPC.ACR.DQR.03.10-2023


Issue: 1.0

Date: 10/11/2023

Page: 84



The hourly reported cloud coverage, categorized by the percentage of the sky covered by clouds.



The hourly observed weather, color coded by category (in order of severity). If multiple reports are present, the most severe code is shown.

Figure 102: Cloud observations and precipitation Valencia, October 2023 (source: <a href="https://weatherspark.com/h/m/42614/2023/10/Historical-Weather-in-October-2023-in-Valencia-Spain#Figures-CloudCover">https://weatherspark.com/h/m/42614/2023/10/Historical-Weather-in-October-2023-in-Valencia-Spain#Figures-CloudCover</a>)

In October, there have been 22 acquisitions below 30 degree OZA. Ten of the SC observation show clear sky conditions (see Figure 103), while one image shows partially a bird sitting on top. Even though the sun is close to the centre of all acquisitions, the SC classification (see Figure 104) shows only a little cloud bias. When the majority of the reference window, used for the classification, is classified as sun, those observations are not used for the comparison. Leading to only 18 out of 22 comparable matches.

vlc-skycam1\_202 31031T104202\_de fisheyed\_low\_exp .jpg

vlc-skycam1\_202 31031T104202\_de fisheyed\_low\_exp

# **Optical MPC**

## **Data Quality Report - Sentinel-3 OLCI**

## October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

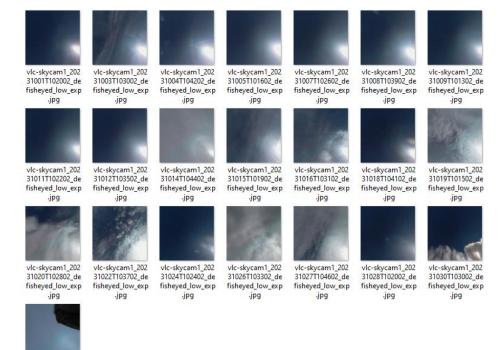



Figure 103: Sky camera acquisitions over Valencia during Sentinel-3 OLCI overpass

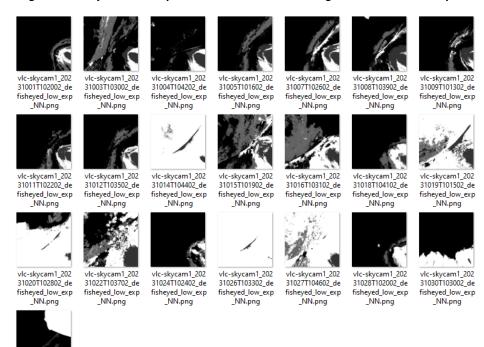



Figure 104: Classified sky camera acquisitions over Valencia during Sentinel-3 OLCI overpass



# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 86

Figure 105 shows the validation results for the OLCI cloud flags including the margin. Only OLCI observations with a OZA below 30 have been considered to lower the influence of parallax between the OLCI observation and the SC observation.

The SC classification of the Valencia SC is better trained to identify the sun in the images therefore, the interference of sun is a bit better, leading to less false classifications. If pixels of the SC image are classified as sun, and the majority of the used window of the SC image shows mostly sun, those acquisitions are neglected for the comparison. Therefore, the reference is lowered to 18 matchups.

The results show a good agreement between the sky camera reference and the OLCI L2 cloud masking, when using the margin. Neglecting the margin leads to higher omission errors of clouds.

Valencia SC 1 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous & Margin September 2023 Sky Camera 1

|         | Class | Clear | Cloud | Sum | U A  | E     |
|---------|-------|-------|-------|-----|------|-------|
| ~       | CLEAR | 6     | 1     | 7   | 85.7 | 14.3  |
| -2 LFR  | CLOUD | 1     | 10    | 11  | 90.9 | 9.1   |
| OLCI L2 | Sum   | 7     | 11    | 18  |      |       |
|         | РΑ    | 85.7  | 90.9  |     | OA:  | 88.89 |
|         | E     | 14.3  | 9.1   |     | BOA: | 88.3  |

Scotts Pi: 0.766 Krippendorfs alpha: 0.772 Cohens kappa: 0.766

Figure 105: Confusion matrix showing validation results for OLCI L2 cloud screening including margin against SC1 automated classification



# **Data Quality Report – Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 87

# Valencia SC 1 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous September 2023 Sky Camera 1

|         | Class | Clear | Cloud | Sum | U A   | E     |
|---------|-------|-------|-------|-----|-------|-------|
|         | CLEAR | 7     | 4     | 11  | 63.6  | 36.4  |
| _2 LFR  | CLOUD | 0     | 7     | 7   | 100.0 | 0.0   |
| OLCI L2 | Sum   | 7     | 11    | 18  |       |       |
|         | РΑ    | 100.0 | 63.6  |     | OA:   | 77.78 |
|         | E     | 0.0   | 36.4  |     | BOA:  | 81.8  |

Scotts Pi: 0.555 Krippendorfs alpha: 0.567 Cohens kappa: 0.576

Figure 106: Confusion matrix showing validation results for OLCI L2 cloud screening excluding margin against SC1 automated classification



Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 88

# 5 Validation of Integrated Water Vapour over Land & Water

We continuously investigate the temporal evolution of quality measures of integrated water vapour, when comparing SUOMI NET (Ware et al. 2000) with reduced resolution data of OLCI L2 non-time-critical. All data until March 2022 has been acquired from EUMETSAT CODA, all data from Apr 2022 on has been downloaded from EUMETSAT's datastore (collection id: EO:EUM:DAT:0410).

41942 (OLCI-A) and 26277 (OLCI-B) valid matchups within the period of June 2016 (OLCI-A) January 2019 (OLCI-B) to end of October 2023 have been analysed. The global service of SUOMI-NET has been reduced at the end of 2018; thus OLCI-B colocations are less frequent outside North America.

For the cloud detection, the standard L2 cloud-mask has been applied (including the cloud ambiguous and cloud margin flags). The comparison of OLCI and GNSS shows a very high agreement (Figure 107). The correlation between both quantities is around 0.98. The root-mean-squared-difference is 1.9 -2.1 kg/m<sup>2</sup>. The systematic overestimation by OLCI is 11%-12%. The bias corrected *rmsd* is around 1.3 kg/m<sup>2</sup>.

The temporal evolution of several quality measures (Figure 108), indicates small seasonal variations, which are certainly related to retrieval assumptions.



# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

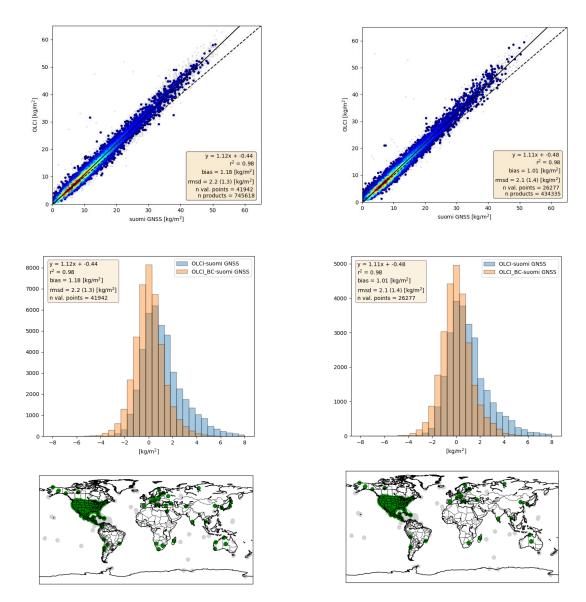
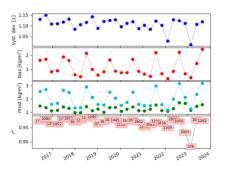



Figure 107: Upper: Scatter plot of the IWV products, derived from OLCI (A left, B right) above land and from SUOMI NET GNSS measurements. Middle: Histogram of the difference between OLCI (A: left, B: right) and GNSS (blue: original OLCI, orange: bias corrected OLCI). Lower: Positions of the GNSS (A: left, B: right).




# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023



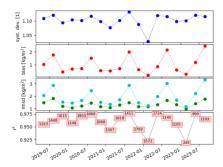



Figure 108: Temporal evolution of different quality measures for OLCI A (left) and OLCI B (right) with respect to SUOMI Net. From top to bottom: systematic deviation factor, bias, root mean squared difference (with and without bias correction), explained variance (number in boxes are the numbers of matchups)



# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 91

# 6 Level 2 SYN products validation

# **6.1 SYN L2 SDR products**

There have been no new results during the reporting period. The latter figures (reported in <u>OLCI Data Quality Report covering September 2023</u>) are considered valid.

# 6.2 SY\_2\_VGP, SY\_2\_VG1 and SY\_2\_V10 products

The similarity of SYN VGT like products with the PROBA-V archive is evaluated through intercomparison of 10-daily composites extractions over LANDVAL [1] sites. Since there is no overlap with the PROBA-V nominal operational phase and no PROBA-V Collection 2 climatology is available yet, direct comparison is done by comparing the SY\_2\_V10 NTC products starting January/2021 with PROBA-V S10-TOC products since January/2017.

The temporal evolution of statistics results below are based on intercomparison over the entire periods up to October/2023. The scatterplots are based on intercomparison between SY\_2\_V10 products of October/2023 with PROBA-V Collection 2 S10-TOC products of October/2019.

## **Products availability**

Availability of SY\_2\_VG1 and SY\_2\_V10 products is checked through an automated query and download via the Copernicus Data Space Ecosystem feeding the products database of the Belgian Collaborative Ground Segment (Terrascope, <a href="www.terrascope.be">www.terrascope.be</a>). For the month October/2023, there are no missing data or empty files.

## **Statistical consistency**

The scatter density plots with geometric mean regression equation, coefficient of determination (R²) and APU statistics based on intercomparison between SY\_2\_V10 products of October/2023 with PROBA-V Collection 2 products of October/2019 are shown in Figure 109. The APU statistics are defined as: Accuracy (A) or average bias, Precision (P) or the standard deviation of the bias, and Uncertainty (U) or the Root Mean Squared Distance. Accuracy is best for BLUE (< 1%) and slightly less good for the other bands (up to 2%). The relatively large values for Precision (large scatter, low R²) are caused by the fact that acquisitions of two different years are compared.

# OPT-MPC Paulo Sulphono Control Mission Performance Cluster Optical Mission Performance Cluster

# **Optical MPC**

# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 92

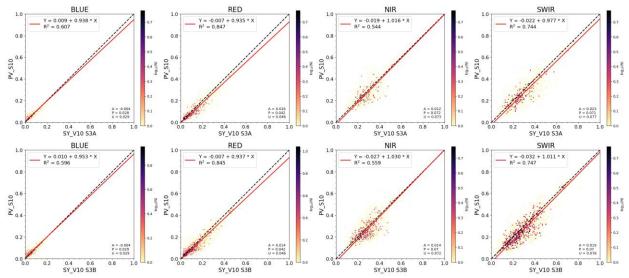



Figure 109: Scatter density plots between SY\_V10 S3A (top) or S3B (bottom) and PROBA-V C2 S10-TOC for BLUE, RED, NIR and SWIR bands (left to right), October/2023 vs. October/2019

# **Temporal consistency**

The temporal evolution of APU statistics derived from intercomparison of SY\_2\_V10 NTC products January/2021 – October/2023 with those of PROBA-V S10-TOC January/2017 – October/2019 (Figure 110). The APU statistics show stable evolution over time, although some seasonal pattern is observed for the mainly the SWIR channel, and to a lesser extent the RED and NIR channel. The temporal behaviour is stable, except for a strong discontinuity for the SWIR band, with improved statistics at the end of July/2023. From 18/07/2023 (for S3B) and 25/07/2023 (for S3A) an updated processing baseline is in operations, including application of SLSTR calibration factors, and aligning the spectral resampling to PROBA-V. As a result, the statistical consistency for RED, NIR and SWIR has improved in comparison to previous periods, which were affected by erroneous spectral resampling and the SLSTR calibration offset (in bands S5 and S6).

# OPT-MPC Page 10 Performance Cluster Optical Mission Performance Cluster

# **Optical MPC**

# Data Quality Report -Sentinel-3 OLCI

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 93

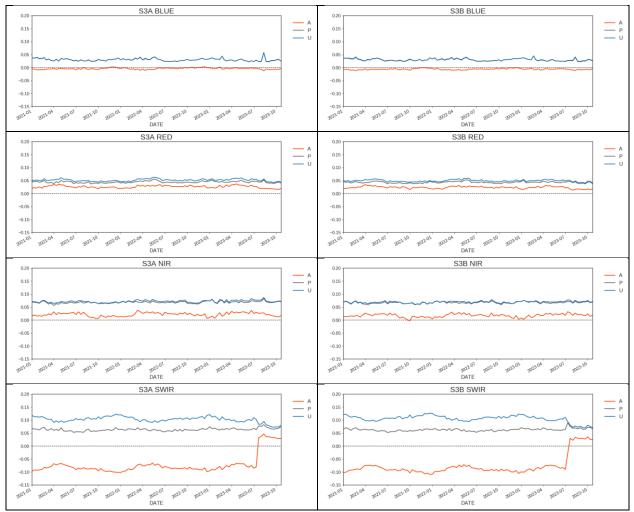



Figure 110: Temporal evolution of APU statistics between SY\_2\_V10 S3A (left) or S3B (right) and PROBA-V S10-TOC for BLUE, RED, NIR and SWIR bands (top to bottom), January/2021 – October/2023 (S3 SYN VGT) vs.

January/2017 – October/2019 (PROBA-V)

Figure 111 shows the temporal evolution of APU statistics derived from the intercomparison of SY\_2\_V10 NTC products based on S3A with those based on S3B January/2021 – October/2023. The APU statistics show a stable temporal evolution, except for a strong discontinuity for SWIR, related to the different timing of the processing baseline update for S3A resp. S3B (see above).



# **Data Quality Report – Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 94

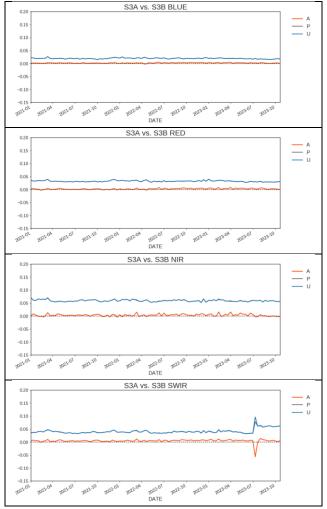



Figure 111: Temporal evolution of APU statistics between S3A\_SY\_2\_V10 and S3B\_SY\_2\_V10 for BLUE, RED, NIR and SWIR bands (top to bottom), January/2021 – October/2023

# References

[1] B. Fuster *et al.*, "Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service," *Remote Sens.*, vol. 12, no. 6, p. 1017, Mar. 2020, doi: 10.3390/rs12061017.



**Data Quality Report – Sentinel-3 OLCI** 

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 95

# 6.3 SYN L2 AOD NTC products

There have been no new results during the reporting period. The latter figures (reported in <u>OLCI Data Quality Report covering September 2023</u>) are considered valid.



# **Data Quality Report – Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 96

# **7 Events**

For OLCI-A, two Radiometric Calibration sequences have been acquired during the reported period:

- Sol sequence (diffuser 1) on 14/10/2023 10:18 to 10:20 (absolute orbit 39878)
- \$ S01 sequence (diffuser 1) on 23/10/2023 08:04 to 08:06 (absolute orbit 40005)

For OLCI-B, two Radiometric Calibration sequences have been acquired during the reported period:

- S01 sequence (diffuser 1) on 22/10/2023 12:54 to 12:56 (absolute orbit 28600)
- Sol sequence (diffuser 1) on 27/10/2023 15:47 to 15:49 (absolute orbit 28673)



# **Data Quality Report - Sentinel-3 OLCI**

October 2023

Ref.: OMPC.ACR.DQR.03.10-2023

Issue: 1.0

Date: 10/11/2023

Page: 97

# 8 Appendix A

All Data Quality Reports, as well as past years Data Quality Reports and Annual Performance Reports, are available on dedicated pages in Sentinel Online website, at:

- https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/data-quality-reports
- https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/data-quality-reports
- https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/data-quality-reports
- OPT Annual Performance Report Year 2022 (PDF document)

**End of document**