Copernicus Sentinel-3 Surface Topography Mission - Cyclic Performance Report
Land Ice

S3A
Cycle No. 080
Start date: 17/12/2021
End date: 13/01/2022

S3B
Cycle No. 061
Start date: 27/12/2021
End date: 23/01/2022

Reference: S3MPC-STM_CPR_0007-080-061
Issue 1.1 - 02/03/2022
Contract: 4000136824/21/I-BG
CHRONOLOGY ISSUES

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Object</th>
<th>Written by</th>
<th>Checked by</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>19/01/2022</td>
<td>First version</td>
<td>DTU Space</td>
<td>J. Aublanc</td>
<td>G. Jettou</td>
</tr>
<tr>
<td>1.1</td>
<td>02/03/2022</td>
<td>New version to account for ESA and CLS feedback</td>
<td>DTU Space</td>
<td>J. Aublanc</td>
<td>G. Jettou</td>
</tr>
</tbody>
</table>

ACCEPTANCE

<table>
<thead>
<tr>
<th></th>
<th>CLIENT: ESA</th>
<th>SUPPLIER: CLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Pierre Féménias</td>
<td>Ghita Jettou</td>
</tr>
<tr>
<td>Function</td>
<td>ESA Technical Officer</td>
<td>MPC Service Manager</td>
</tr>
</tbody>
</table>
LIST OF CONTENTS

1. Introduction
2. Cycle overview
3. Processing baseline
4. Data availability and missing measurements
 4.1 Orbit coverage and missing measurements
 4.2 Mode of operations
 4.3 Availability of geophysical corrections
 4.3.1 Availability of Geophysical Corrections over Ice Sheets
 4.3.2 Availability of Geophysical Corrections over Ice Shelves
4.4 Data availability and missing measurements
5. Geophysical parameters monitoring
 5.1 Geophysical parameters derived from altimetry
 5.1.1 20 Hz Ku Band Elevation (elevation_ice_sheet_20_ku)
 5.1.2 20 Hz Ku Band Ice Sheet Range (range_ice_sheet_20_ku)
 5.1.3 20Hz Ku Band Ice Sheet Sigma0 (sig0_ice_sheet_20_ku)
 5.1.4 20 Hz Ku Band OCOG (Ice-1) Elevation (elevation_ocog_20_ku)
 5.1.5 20 Hz Ku Band OCOG (Ice-1) Sigma0 (sig0_ocog_20_ku)
 5.1.6 20 Hz Ku Band OCOG (Ice-1) Range (range_ocog_20_ku)
 5.1.7 PLRM Ice Range (range_ice_20_plrm_ku)
 5.1.8 PLRM Ice Sigma0 (sig0_ice_20_plrm_ku)
 5.1.9 Waveform Quality Flag (waveform_qual_ice_20_ku)
 5.2 Auxiliary parameters monitoring
 5.2.1 20 Hz Ku Band Surface Type (surf_type_20_ku)
 5.2.2 20 Hz Ku Band Surface Class (surf_class_20_ku)
 5.2.3 Slope correction
6. Crossover Analysis
 Appendix A- Useful links
 Appendix B- References:
LIST OF TABLES
Table 2.1 General overview of the data availability and mission performances for the S3A and S3B cycles evaluated. Colours indicate performance: OK (green), Warning (yellow), and Not ok (red) .. 7
Table 3.1 Processing baseline and IPF details .. 7
Table 4.1 Data availability and the percentage of full cycle of STC products ... 8
Table 4.2 Percentage of Geophysical Correction availability over the Greenland ice sheet .. 11
Table 4.3 Percentage of Geophysical Correction availability over the Antarctic Ice Sheet 11
Table 4.4 Percentage of Geophysical Correction availability over the Antarctic Ice Shelves........ 12
Table 5.1 The thresholds used for each waveform quality test ... 39
Table 6.1 Crossover elevation difference statistics for Greenland ... 48
Table 6.2 Crossover elevation difference statistics for Antarctica ... 51

LIST OF FIGURES
Figure 1.1 S3A and S3B cycles chronology .. 6
Figure 4.1 Tracking mode for S3A and S3B over Greenland from the mode_id_20_ku 9
Figure 4.2 Tracking mode for S3A and S3B over Antarctica from the mode_id_20_ku 9
Figure 4.3 Satellite view of new targets for Sentinel-3A in Open-Loop mode. 10
Figure 5.1 SAR mode Ice sheet elevation over Greenland from the elevation_ice_sheet_20_ku 14
Figure 5.2 Percentage of failure over Greenland from the elevation_ice_sheet_20_ku 15
Figure 5.3 SAR mode elevation over Antarctica from the elevation_ice_sheet_20_ku 16
Figure 5.4 Percentage of failure over Antarctica from the elevation_ice_sheet_20_ku 16
Figure 5.5 SAR mode range over the Greenland ice sheet from the range_ice_sheet_20_ku 17
Figure 5.6 Percentage of failure over the Greenland ice sheet for the range_ice_sheet_20_ku 18
Figure 5.7 SAR mode range over Antarctica from the range_ice_sheet_20_ku parameter 19
Figure 5.8 Percentage of failure over Antarctica for the range_ice_sheet parameter 19
Figure 5.9 SAR backscatter coefficient over the Greenland from the sig0_ice_sheet_20_ku 20
Figure 5.10 The SAR mode backscatter coefficient distribution over the Greenland Ice Sheet 20
Figure 5.11 Percentage of failure over the Greenland ice sheet for the sig0_ice_sheet_20_ku 21
Figure 5.12 SAR mode backscatter coefficient over Antarctica from the sig0_ice_sheet_20_ku 21
Figure 5.13 The SAR mode backscatter coefficient distribution over Antarctica 22
Figure 5.14 Percentage of failure over Antarctica for the sig0_ice_sheet_20_ku 22
Figure 5.15 SAR mode elevation over the Greenland from the elevation_ocog_20_ku 23
Figure 5.16 Percentage of failure over the Greenland for the elevation_ocog_20_ku 24
Figure 5.17 SAR mode elevation over Antarctica from the elevation_ocog_20_ku 25
Figure 5.18 Percentage of failure over Antarctica for the elevation_ocog_20_ku 25
Figure 5.19 SAR mode backscatter coefficient over the Greenland from the sig0_ocog_20_ku ... 26
Figure 5.20 SAR mode backscatter coefficient distribution over the Greenland 26
Figure 5.21 Percentage of failure over the Greenland ice sheet from the sig0_ocog_20_ku 27
Figure 5.22 SAR mode backscatter coefficient over Antarctica from the sig0_ocog_20_ku28
Figure 5.23 The backscatter coefficient (sig0_ocog_20_ku) distribution over Antarctica.................28
Figure 5.24 Percentage of failure over Antarctica for the sig0_ocog_20_ku29
Figure 5.25 SAR mode range over the Greenland ice sheet from the range_ocog_20_ku30
Figure 5.26 Percentage of failure over the Greenland ice sheet for the range_ocog_20_ku............31
Figure 5.27 SAR Mode range over Antarctica from the range_ocog_20_ku...............................32
Figure 5.28 Percentage of failure over Antarctica for the range_ocog_20_ku.............................32
Figure 5.29 PLRM range over the Greenland ice sheet from the range_ice_20_plrm_ku33
Figure 5.30 Percentage of failure over the Greenland for the range_ice_20_plrm_ku34
Figure 5.31 PLRM range over the Antarctica ice sheet from the range_ice_20_plrm_ku35
Figure 5.32 Percentage of failure over Antarctica for the range_ice_20_plrm_ku35
Figure 5.33 PLRM backscatter coefficient over Antarctica from the sig0_ice_20_plrm_ku36
Figure 5.34 The backscatter coefficient (sig0_ice_20_plrm_ku) distribution over Greenland........36
Figure 5.35 Percentage of failure over the Greenland from the sig0_ice_20_plrm_ku37
Figure 5.36 PLRM backscatter coefficient over Antarctica from the sig0_ice_20_plrm_ku38
Figure 5.37 The backscatter coefficient (sig0_ice_20_plrm_ku) distribution over Antarctica........38
Figure 5.38 Percentage of failure over Antarctica for the sig0_ice_plrm_ku39
Figure 5.39 Waveform Quality Flag for the Greenland ice sheet ...40
Figure 5.40 Waveform Quality Flag for Antarctica...40
Figure 5.41 Surface Type for Greenland ice sheet from the surf_type_20_ku42
Figure 5.42 Surface Type for Antarctic Ice Sheet and Ice cap from the surf_type_20_ku42
Figure 5.43 Surface Class for the Greenland ice sheet from the surf_class_20_ku45
Figure 5.44 Surface Class for Antarctica from the surf_class_20_ku ..45
Figure 5.45 Slope correction failure for the Greenland ice sheet ..46
Figure 5.46 Slope correction failure for Antarctica...47
Figure 6.1 SAR mode elevation differences at ground track crossover locations for Sentinel-3A .49
Figure 6.2 SAR mode elevation differences at ground track crossovers for Sentinel-3B50
Figure 6.3 SAR mode elevation differences at ground track crossover locations for Sentinel-3A .52
Figure 6.4 SAR mode elevation differences at ground track crossovers for Sentinel-3B53
1 Introduction

The purpose of this document is to report on the performance and data quality of the Copernicus Sentinel-3 Surface Topography Mission (STM) LAND products. The constellation currently includes Sentinel-3A and Sentinel-3B altimetry satellites. This document is associated with data dissemination on a cyclic basis and is generated a few days after the end of Sentinel-3B cycle.

The SRAL Level 2 products assessed hereafter are produced by the ESA Sentinel-3 LAND Processing Centre. One of the main goals of the cyclic report is to detect and report as quickly as possible any events, or anomaly, impacting the data quality. Subsequently, the assessments are made on the Short Time Critical (STC) products, generally delivered 48 hours after data acquisitions. Differences are expected with the Non Time Critical (NTC) products, for which the orbit data and several geophysical corrections are consolidated.

The main objectives of this document are:

➢ To provide a data quality assessment of the Sentinel-3 SRAL Level 2 STC products
➢ To report on any changes likely to impact data quality at any level, from instrument status to software configuration.
➢ To present the major useful results for S3A cycle 080, from 17/12/2021 to 13/01/2022.
➢ To present the major useful results for S3B cycle 061, from 27/12/2021 to 23/01/2022.

![Figure 1.1 S3A and S3B cycles chronology](image-url)
2 Cycle overview

During these cycles, Sentinel-3A and Sentinel-3B SRAL operated in SAR mode over the ice sheets. 100% of the expected orbits were received and assessed.

For Level-2 STC Land ice products over the polar ice sheets the OCOG (Ice-1) retracker provides the largest amount of ice sheet elevation data, and most failures are located close to the ice sheet margins.

Mainly, the acquisition of the satellites is in closed-loop. From December 9th, 2021, the S3A also tracks with open-loop over targets in Victoria Land, Antarctica.

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Nominal orbit coverage (100%)</td>
</tr>
<tr>
<td>Availability of geophysical corrections</td>
<td>Nominal</td>
</tr>
<tr>
<td>Availability of auxiliary data</td>
<td>Nominal auxiliary data availability</td>
</tr>
<tr>
<td>Geophysical parameters</td>
<td>Nominal performances in the altimeter-derived geophysical parameters</td>
</tr>
<tr>
<td>Specific investigations</td>
<td>N/A</td>
</tr>
<tr>
<td>Orbit cross-over statistics</td>
<td>The UCL ice sheet retracker enables fewer cross-overs to be evaluated than for the OCOG/ICE-1 retracker (Antarctica 70 %, Greenland 47 %). For cross-overs less than 1 meter show a mean bias of 1 cm and standard deviation < 40 cm.</td>
</tr>
<tr>
<td>Status</td>
<td>Overall nominal data availability and nominal mission performances on this cycle</td>
</tr>
</tbody>
</table>

Table 2.1 General overview of the data availability and mission performances for the S3A and S3B cycles evaluated. Colours indicate performance: OK (green), Warning (yellow), and Not ok (red)

3 Processing baseline

Table 3.1 summarizes the versions of the Processing Baseline, and Level-1 and Level-2 Instrument Processing Facility software used to generate the products assessed hereafter. This is part of the Baseline collection 004.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Processing Baseline</th>
<th>IPF SM2 version</th>
<th>IPF SR1 version</th>
<th>IPF MW1 version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel-3A</td>
<td>80</td>
<td>2.72</td>
<td>06.19</td>
<td>06.20</td>
</tr>
<tr>
<td>Sentinel-3B</td>
<td>61</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1 Processing baseline and IPF details

The evolutions of the Sentinel-3 STM Processing Baseline since July 2016, end of commissioning phase, are summarized in the “Sentinel Online” Web pages: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-altimetry/processing-baseline
4 Data availability and missing measurements

4.1 Orbit coverage and missing measurements

There may occur delays in the processing of the data at the processing centre, which means that the data products assessed in the cyclic reports might not represent 100% of the orbits in the full cycle. The percentage of L2 products of the full cycle, which this report builds on is presented in the Table 4.1.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Product type</th>
<th>Latency</th>
<th>Expected orbits</th>
<th>Received orbits</th>
<th>% orbits received</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3A 080</td>
<td>SR_2_LAN</td>
<td>STC</td>
<td>385</td>
<td>385</td>
<td>100 %</td>
</tr>
<tr>
<td>S3B 061</td>
<td>385</td>
<td>385</td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Data availability and the percentage of full cycle of STC products

4.2 Mode of operations

The on-board tracker of the Sentinel-3 altimeter has three different possible modes:

- **Closed-loop mode**: autonomous positioning of the range window using the median algorithm
- **Open-loop mode**: range window position based on a priori knowledge of terrain altitude derived from a Digital Elevation Model (DEM).
- **Open-loop with fixed gain mode**: in addition to open-loop, constant acquisition gain values are applied

Figure 4.1 shows the tracking modes for both S3A and S3B. Mainly, the acquisition of the satellites is in closed-loop, except for Elephant Island and Coronation Island in the Southern Ocean where the tracking modes are Open-loop. In addition, open-loop commands have been defined for S3A over several specific continental glaciers (for glaciers in Himalaya, Patagonia, Alpes, Pyrénées, Andes and Tadjikistan).
Since December 9th, 2021, the S3A also tracks with open-loop over targets in Victoria Land, Antarctica. The Figure 4.3 displays a satellite view over Victoria Land area, with the S3A tracks for which new Open
Loop Tracking Commands have been defined. The theoretical ground tracks are referenced by Relative Orbit Number (RON).

More information about these acquisitions can be found in Sentinel Online:

https://sentinels.copernicus.eu/web/sentinel/-/sentinel-3a-changes-acquisition-mode-over-victoria-land-glaciers/1.2?redirect=%2Fweb%2Fsentinel%2Fnews

![Figure 4.3 Satellite view of the Antarctica glacier area covered by new targets for Sentinel-3A in Open-Loop mode. Targeted glaciers used to set new elevation commands for Sentinel-3A SRAL altimeter waveform reception window in Open-Loop Mode is shown (cyan boxes) with corresponding elevation values. Copyright: Google Satellite, figure design CNES.](image)

4.3 Availability of geophysical corrections

The range from the satellite to the surface for each measurement is computed by applying several geophysical corrections and internal delay to the initial uncorrected range. It is important to track the availability and validity of these corrections since they are required for the final L2 elevation parameters and the derived ice sheet surface elevation change. The data over ice sheets and ice shelves are selected by using the surface_class flag (Section 5.2.2) over Greenland and Antarctica.

In this section the availability of geophysical corrections in the L2 products over ice sheets and ice shelves are analysed and presented.
4.3.1 Availability of Geophysical Corrections over Ice Sheets

The geophysical corrections usually relevant for range measurements over ice sheets are the dry and wet troposphere, ionosphere delays, solid Earth tide, ocean loading tide, and polar tide. Table 4.2 and Table 4.3 summarize the availability for the Greenland and Antarctica Ice Sheets, for S3A and S3B.

<table>
<thead>
<tr>
<th>Geophysical Correction</th>
<th>Availability (%)</th>
<th>Geophysical Correction</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean_tide_non_eq.01</td>
<td>100.00</td>
<td>ocean_tide_non_eq.01</td>
<td>100.00</td>
</tr>
<tr>
<td>pole_tide.01</td>
<td>100.00</td>
<td>pole_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>load_tide_sol1.01</td>
<td>100.00</td>
<td>load_tide_sol1.01</td>
<td>100.00</td>
</tr>
<tr>
<td>load_tide_sol2.01</td>
<td>100.00</td>
<td>load_tide_sol2.01</td>
<td>100.00</td>
</tr>
<tr>
<td>solid_earth_tide.01</td>
<td>100.00</td>
<td>solid_earth_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_wet_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
<td>mod_wet_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_dry_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
<td>mod_dry_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>iono_cor_gim.01.ku</td>
<td>100.00</td>
<td>iono_cor_gim.01.ku</td>
<td>100.00</td>
</tr>
<tr>
<td>iono_cor_alt.01.ku</td>
<td>78.54</td>
<td>iono_cor_alt.01.ku</td>
<td>78.74</td>
</tr>
<tr>
<td>iono_cor_alt.20.ku</td>
<td>76.99</td>
<td>iono_cor_alt.20.ku</td>
<td>76.80</td>
</tr>
</tbody>
</table>

Table 4.2 Percentage of Geophysical Correction availability over the Greenland Ice Sheet

<table>
<thead>
<tr>
<th>Geophysical Correction</th>
<th>Availability (%)</th>
<th>Geophysical Correction</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean_tide_non_eq.01</td>
<td>100.00</td>
<td>ocean_tide_non_eq.01</td>
<td>100.00</td>
</tr>
<tr>
<td>pole_tide.01</td>
<td>100.00</td>
<td>pole_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>load_tide_sol2.01</td>
<td>100.00</td>
<td>load_tide_sol2.01</td>
<td>100.00</td>
</tr>
<tr>
<td>solid_earth_tide.01</td>
<td>100.00</td>
<td>solid_earth_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_wet_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
<td>mod_wet_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_dry_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
<td>mod_dry_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>iono_cor_gim.01.ku</td>
<td>100.00</td>
<td>iono_cor_gim.01.ku</td>
<td>100.00</td>
</tr>
<tr>
<td>iono_cor_alt.01.ku</td>
<td>89.38</td>
<td>iono_cor_alt.01.ku</td>
<td>89.21</td>
</tr>
<tr>
<td>iono_cor_alt.20.ku</td>
<td>87.35</td>
<td>iono_cor_alt.20.ku</td>
<td>87.08</td>
</tr>
</tbody>
</table>

Table 4.3 Percentage of Geophysical Correction availability over the Antarctic Ice Sheet

4.3.2 Availability of Geophysical Corrections over Ice Shelves

Over the Antarctic ice shelves, the usual corrections applied to the range are the same as for the ice sheets including ocean tide and inverse barometric corrections. Table 4.4 summarizes the availability for S3A and S3B.
Table 4.4 Percentage of Geophysical Correction availability over the Antarctic Ice Shelves.

<table>
<thead>
<tr>
<th>Geophysical Correction</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hf_fluct_cor.01</td>
<td>100.00</td>
</tr>
<tr>
<td>inv_bar.cor.01</td>
<td>100.00</td>
</tr>
<tr>
<td>ocean_tide_non_eq.01</td>
<td>100.00</td>
</tr>
<tr>
<td>ocean_tide_sol1.01</td>
<td>98.84</td>
</tr>
<tr>
<td>ocean_tide_sol2.01</td>
<td>99.54</td>
</tr>
<tr>
<td>pole_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>load_tide_sol1.01</td>
<td>100.00</td>
</tr>
<tr>
<td>load_tide_sol2.01</td>
<td>100.00</td>
</tr>
<tr>
<td>solid_earth_tide.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_wet_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>mod_dry_tropo_cor_meas_altitude.01</td>
<td>100.00</td>
</tr>
<tr>
<td>iono_cor_gim_01.ku</td>
<td>96.39</td>
</tr>
<tr>
<td>iono_cor.alt.01.ku</td>
<td>95.62</td>
</tr>
<tr>
<td>iono_cor.alt.20.ku</td>
<td>95.62</td>
</tr>
</tbody>
</table>

As noticed in the tables above, the ionospheric correction derived from altimetry measurements (iono_cor_alt.01_ku and iono_cor_alt.20_ku) has a relative low availability over the polar ice sheets and ice shelves. This correction is computed by combining range altimeter measurements in Ku and C bands. As an oceanic retracker is employed to derive these range measurements, not adapted to continental waveforms, there are regular failures, and the ionospheric correction is set to “Fill Value”. Subsequently, this low data availability is expected and therefore not an anomaly. We remind to data users that they must use the GIM model to obtain an accurate ionospheric correction over land ice.

5 Geophysical parameters monitoring

5.1 Geophysical parameters derived from altimetry

Over land ice two different retrackers are implemented in the Sentinel-3 Instrument Processing Facilities (IPF) to retrieve geophysical parameters from SAR mode waveforms:

- The "OCOG/ICE-1 retracker" (Wingham D J, Rapley C G, and Griffiths H 1986; Bamber 1994) is an empirical algorithm commonly used over land surfaces. The OCOG/ICE-1 retracker is robust and will almost always return a topography estimation, even over rugged or steep topography, where the altimetry waveform may exhibit complex waveform shapes. The "UCL ice sheet retracker" is a model fit retracker, optimised for use over areas of low slope where the returned waveform has a classical shape typical of flat and smooth ice sheet surfaces. The echo model used has a modified gaussian form, corresponding to a six parameterizable function with 5-section modelling. It has a heritage from the CryoSat-2 mission’s Wingham/Wallis retracker (Wingham and Wallis 2010).

- The "UCL ice sheet retracker" is a model fit retracker, optimised for use over areas of low slope where the returned waveform has a classical shape typical of flat and smooth ice sheet surfaces. The echo model used has a modified gaussian form, corresponding to a six parameterizable function with 5-section modelling. It has a heritage from the CryoSat-2 mission’s Wingham/Wallis retracker (Wingham and Wallis 2010).

Two main geophysical parameters are derived from both retrackers:
• The surface elevation with respect to the reference ellipsoid (WGS-84). Parameter’s name in the level-2 LAND products are “elevation_ocog_20_ku” and “elevation_ice_sheet_20_ku”, respectively estimated with the “OCOG/ICE-1” and “UCL ice sheet” retrackers.
• The backscattering coefficient (Sigma-0). Parameter’s name in the level-2 LAND products are “sig0_ocog_20_ku” and “sig0_ice_sheet_20_ku”, respectively estimated with the “OCOG/ICE-1” and “UCL ice sheet” retrackers. The backscatter values are controlled by surface characteristics, such as slope, roughness, and surface properties (volume vs. surface scattering). It is an important parameter and is used for deriving accurate estimates of ice/snow surface elevation changes.

In addition, the altimeter range and backscattering coefficient derived from the Pseudo-LRM (PLRM) waveforms are also available in the level-2 products assessed. They are retrieved by the ICE-2 retracker (Legresy and Remy 1997). Parameter’s names are respectively “range_ice_20_plrm_ku” and “sig0_ice_20_plrm_ku”.

5.1.1 20 Hz Ku Band Elevation (elevation_ice_sheet_20_ku)

Figure 5.1 shows the elevation_ice_sheet_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.2 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells.
Figure 5.1 SAR mode Ice sheet elevation over Greenland from the `elevation_ice_sheet_20_ku` parameter
Figure 5.2 Percentage of failure over Greenland from the elevation_ice_sheet_20_ku parameter

Figure 5.3 shows the elevation_ice_sheet_20_ku parameter over Antarctica for the S3A and S3B full cycles, while Figure 5.4 shows the percentage of parameter failure (NaN reported) evaluated in 10x10 km grid cells.
5.1.2 20 Hz Ku Band Ice Sheet Range (range_ice_sheet_20_ku)

Figure 5.5 shows the range_ice_sheet_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.6 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells. Figure 5.7 shows the range_ice_sheet_20_ku parameter over the Antarctic ice sheets for the S3A and S3B full cycles, while Figure 5.8 shows the percentage of parameter failure (NaN reported) evaluated in 10x10km grid cells.
Figure 5.5 SAR mode range over the Greenland ice sheet from the range_ice_sheet_20_ku parameter
Figure 5.6 Percentage of failure over the Greenland ice sheet for the range_ice_sheet_20_ku parameter
5.1.3 20Hz Ku Band Ice Sheet Sigma0 (sig0_ice_sheet_20_ku)

Figure 5.9 shows the sig0_ice_sheet_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.11 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells. Figure 5.12 shows the Sigma0 ice sheet 20 Ku parameter over the Antarctic ice sheets for the S3A and S3B full cycles. Figure 5.14 shows the percentage of parameter failure (NaN reported) evaluated in 10x10 km grid cells.

The backscatter coefficient (sig0_ice_sheet_20_ku) distribution over the Greenland Ice Sheet, and statistics given by the Number of Observations, Median (dB), Median Absolute Deviation (MAD) in dB, and the Interquartile Range (IQR) given in dB. Figure 5.10 and Figure 5.13 show the distribution and statistics of the sig0_ice_sheet_20_ku parameter for the Greenland Ice Sheet and Antarctica, respectively. For the Median Absolute Deviation (MAD) a non-normal distribution is assumed.
Figure 5.9 SAR mode backscatter coefficient over the Greenland ice sheet from the sig0_ice_sheet_20_ku

Figure 5.10 The SAR mode backscatter coefficient (sig0_ice_sheet_20_ku) distribution over the Greenland Ice Sheet, and statistics given by the Number of Observations, Median (dB), Median Absolute distribution (MAD) in dB, and the Interquartile Range (IQR) given in dB.
Figure 5.11 Percentage of failure over the Greenland ice sheet for the sig0_ice_sheet_20_ku parameter

Figure 5.12 SAR mode backscatter coefficient over Antarctica from the sig0_ice_sheet_20_ku parameter
5.1.4 20 Hz Ku Band OCOG (Ice-1) Elevation (elevation_ocog_20_ku)
Figure 5.15 shows the elevation_ocog_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.16 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells. Figure 5.17 shows the elevation_ice_sheet_20_ku parameter over the Antarctic ice sheets for the S3A and S3B full cycles, while Figure 5.18 shows the percentage of parameter failure (NaN reported) evaluated in 10x10 km grid cells.
Figure 5.16 Percentage of failure over the Greenland ice sheet for the elevation_ocog_20_ku parameter
5.1.5 20 Hz Ku Band OCOG (Ice-1) Sigma0 (sig0_ocog_20_ku)

Figure 5.19 shows the sig0_ocog_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.21 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells. Figure 5.22 shows the sig0_ocog_20_ku parameter over the Antarctic ice sheets for the S3A and S3B full cycles, while Figure 5.24 shows the percentage of parameter failure (NaN reported) evaluated in 10x10 km grid cells. Figure 5.20 and Figure 5.23 show the distribution and statistics of the sig0_ice_sheet_20_ku parameter for the Greenland Ice Sheet and Antarctica, respectively. For the Median Absolute Deviation (MAD) a non-normal distribution is assumed.
Figure 5.19 SAR mode backscatter coefficient over the Greenland ice sheet from the sig0_ocog_20_ku parameter

Figure 5.20 SAR mode backscatter coefficient (sig0_ice_ocog_20_ku) distribution over the Greenland Ice Sheet and statistics given by the Number of Observations, Median (dB), Median Absolute distribution (MAD) in dB, and the Interquartile Range (IQR) given in dB.
Figure 5.21 Percentage of failure over the Greenland ice sheet from the sig0_ocog_20_ku parameter
Figure 5.22 SAR mode backscatter coefficient over Antarctica from the sig0_ocog_20_ku parameter

Figure 5.23 The backscatter coefficient (sig0_ocog_20_ku) distribution over Antarctica and statistics given by the Number of Observations, Median (dB), Median Absolute distribution (MAD) in dB, and the Interquartile Range (IQR) given in dB.
5.1.6 20 Hz Ku Band OCOG (Ice-1) Range (range_ocog_20_ku)

Figure 5.25 shows the range_ocog_20_ku parameter over the Greenland ice sheet for the S3A and S3B full cycles, while Figure 5.26 shows the percentage of parameter failure (NaN reported) evaluated in 5x5 km grid cells. Figure 5.27 shows the range_ocog_20_ku parameter over the Antarctic ice sheets for the S3A and S3B full cycles, while Figure 5.28 shows the percentage of parameter failure (NaN reported) evaluated in 10x10 km grid cells.
Figure 5.25 SAR mode range over the Greenland ice sheet from the range_ocog_20_ku parameter
Figure 5.26 Percentage of failure over the Greenland ice sheet for the range_ocog_20_ku parameter
5.1.7 PLRM Ice Range (range_ice_20_plrm_ku)

The PLRM range over the Greenland ice sheet and the Antarctic ice sheets are shown in Figure 5.29 and Figure 5.31, respectively. Their respective percentage of parameter failure (NaN reported) is shown in Figure 5.30 and Figure 5.32. The latter is evaluated in 5x5 km grid cells in Greenland and in 10x10 km grid cells in Antarctica.
Figure 5.29 PLRM range over the Greenland Ice sheet from the range_ice_20_plrm_ku parameter
Figure 5.30 Percentage of failure over the Greenland Ice sheet for the range_ice_20_plrm_ku parameter
Figure 5.31 PLRM range over the Antarctica Ice sheet from the range_ice_20_plrm_ku parameter

Figure 5.32 Percentage of failure over Antarctica from the range_ice_20_plrm_ku parameter

5.1.8 PLRM Ice Sigma0 (sig0_ice_20_plrm_ku)

The backscatter coefficient (sigma0) derived from the 20 Hz Ku-PLRM waveform (sig0_ice_20_plrm_ku) parameter are shown below. The PLRM Sigma0 over the Greenland and the Antarctica ice sheets are shown in Figure 5.33 and Figure 5.36, respectively. Their respective percentage of parameter failure (NaN reported) are shown in Figure 5.35 and Figure 5.38. The latter are evaluated in 5x5 km grid cells in Greenland and in 10x10 km grid cells in Antarctica.
Figure 5.33 PLRM backscatter coefficient over Antarctica from the sig0_ice_20_plrm_ku parameter.

Figure 5.34 The backscatter coefficient (sig0_ice_20_plrm_ku) distribution over Greenland and statistics given by the Number of Observations, Median (dB), Median Absolute distribution (MAD) in dB, and the Interquartile Range (IQR) in dB.
Figure 5.35 Percentage of failure over the Greenland ice sheet from the sig0_ice_20_plrm_ku parameter
Figure 5.36 PLRM backscatter coefficient over Antarctica from the sig0_ice_20_plrm_ku parameter

Figure 5.37 The backscatter coefficient (sig0_ice_20_plrm_ku) distribution over Antarctica and statistics given by the Number of Observations, Median (dB), Median Absolute distribution (MAD) in dB, and the Interquartile Range (IQR) given in dB.
5.1.9 Waveform Quality Flag (waveform_qual_ice_20_ku)

The waveform quality flag gives the data users information about the quality of the waveforms for use in the calculation of range and elevation, and hence on the useability of the data. The criteria applied to assess each waveform are listed below Table 2.1. The value of waveform_qual_ice_20_ku is zero (ok) if all tests are passed. The waveform quality flags for the present S3A and S3B cycles are shown for the Greenland ice sheet in Figure 5.39, and for Antarctica in Figure 5.40.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Threshold</th>
<th>Flag Bit Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Power in waveform < threshold</td>
<td>2500</td>
<td>1</td>
</tr>
<tr>
<td>Average noise power in gates 6-9* > threshold *Noise gates starts at 0</td>
<td>12.5</td>
<td>2</td>
</tr>
<tr>
<td>Variance > threshold</td>
<td>7.0</td>
<td>4</td>
</tr>
<tr>
<td>Leading Edge Test > threshold Flag set if power to left of gate 42 > threshold * power to right</td>
<td>1.0</td>
<td>8</td>
</tr>
<tr>
<td>Peakiness < Low Threshold</td>
<td>0.9</td>
<td>16</td>
</tr>
<tr>
<td>Peakiness > High Threshold</td>
<td>1e12</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 5.1 The thresholds used for each waveform quality test
Figure 5.39 Waveform Quality Flag for the Greenland ice sheet

Figure 5.40 Waveform Quality Flag for Antarctica
5.2 Auxiliary parameters monitoring

Besides the information derived from the individual altimetric waveforms, the S3A and S3B products contain several geophysical parameters, which are derived from auxiliary data, and which are useful for the end-user of the data products. These parameters include surface type, surface class, and slope correction. In the following, these geophysical parameters for the current S3A and S3B cycles are presented.

5.2.1 20 Hz Ku Band Surface Type (surf_type_20_ku)

The 20 Hz Ku band surface type parameter (surf_type_20_ku) is derived from a static grid which provides four types: open oceans or semi-enclosed seas, enclosed seas or lakes, continental ice, and land. The surf_class_20_ku parameter for the current cycles of S3A and S3B are shown for Greenland in Figure 5.43 and for Antarctica in Figure 5.44. The figures also provide information on the percentage of data that falls into each surface class.
Figure 5.41 Surface Type for Greenland ice sheet from the surf_type_20_ku parameter

Figure 5.42 Surface Type for Antarctic Ice Sheet and Ice cap from the surf_type_20_ku parameter
5.2.2 20 Hz Ku Band Surface Class (surf_class_20_ku)

The 20 Hz Ku surface classification parameter (surf_class_20_ku) is derived from MODIS and GlobCover data. The possible surface classes are: Open ocean, Land, Continental water, Aquatic vegetation, Continental ice, Floating ice, and Salt basins. The surf_class_20_ku parameter for the current cycles of S3A and S3B are shown for Greenland in Figure 5.43 and for Antarctica in Figure 5.44. The figures also provide information on the percentage of data that falls into each surface class.
Figure 5.43 Surface Class for the Greenland ice sheet from the surf_class_20_ku parameter

Figure 5.44 Surface Class for Antarctica from the surf_class_20_ku parameter
5.2.3 Slope correction

A slope correction is applied to each measurement to relocate the SAR echo to the point of closest approach (POCA). The slope-corrected coordinates are given by the variables `lat_cor_20_ku` and `lon_cor_20_ku` for the 20 Hz Ku measurements. The figures below show whether the slope correction was successful or not over Greenland (Figure 5.45) and Antarctica (Figure 5.46).

![Figure 5.45 Slope correction failure for the Greenland ice sheet](image-url)
6 Crossover Analysis

The observed elevation difference at ground-track crosses is a primary method of assessing the precision of L2 altimetry elevation data. Here, we assess the elevation difference for the two available retrackers:

- UCL Ice sheet retracker ("elevation_ice_sheet_20_ku")
- OCOG/ICE-1 retracker ("elevation_ocog_sheet_20_ku")

The crossover difference of the elevation observations is derived for the full cycle of observations. It should be noted that the ice sheet surface elevation is in some area changing over the timespan of a cycle due to e.g., weather and snowpack properties. This may give raise to a natural crossover bias which is not associated with precision of L2 altimetry elevation data. Therefore for more in-depth analysis the timing between crossover should be shortened. The crossover statistics are below as tables, maps, and histograms.
<table>
<thead>
<tr>
<th>Retracker:</th>
<th>Observation [#]</th>
<th>Mean [m]</th>
<th>Std [m]</th>
<th>Observation [%]</th>
<th>Mean [m]</th>
<th>Std [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3315</td>
<td>-1.79</td>
<td>186.62</td>
<td>6996</td>
<td>0.99</td>
<td>137.44</td>
<td>3312</td>
<td>-0.51</td>
<td>205.10</td>
<td>6943</td>
<td>0.19</td>
<td>130.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dh < 0.5 m</td>
<td>64</td>
<td>-0.02</td>
<td>0.20</td>
<td>36</td>
<td>-0.02</td>
<td>0.19</td>
<td>64</td>
<td>-0.01</td>
<td>0.20</td>
<td>36</td>
<td>-0.01</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dh < 1.0 m</td>
<td>74</td>
<td>-0.01</td>
<td>0.32</td>
<td>43</td>
<td>0.00</td>
<td>0.35</td>
<td>73</td>
<td>-0.01</td>
<td>0.31</td>
<td>43</td>
<td>-0.01</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dh < 2.0 m</td>
<td>81</td>
<td>0.00</td>
<td>0.52</td>
<td>50</td>
<td>0.03</td>
<td>0.64</td>
<td>79</td>
<td>-0.01</td>
<td>0.50</td>
<td>49</td>
<td>-0.01</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dh < 5.0 m</td>
<td>87</td>
<td>0.03</td>
<td>1.01</td>
<td>60</td>
<td>0.07</td>
<td>1.49</td>
<td>85</td>
<td>-0.03</td>
<td>0.98</td>
<td>59</td>
<td>-0.03</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dh < 10.0 m</td>
<td>90</td>
<td>0.06</td>
<td>1.71</td>
<td>67</td>
<td>0.09</td>
<td>2.79</td>
<td>89</td>
<td>0.02</td>
<td>1.79</td>
<td>66</td>
<td>0.02</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1 Crossover elevation difference statistics for Greenland
Figure 6.1 SAR mode elevation differences at ground track crossover locations for Sentinel-3A, for the two retrackers (upper panel). Histograms of crossover elevation differences (lower panel).
Figure 6.2 SAR mode elevation differences at ground track crossovers for Sentinel-3B for the two retrackers (upper panel).
Histograms of crossover elevation differences (lower panel)
<table>
<thead>
<tr>
<th>Retracker:</th>
<th>S3A Cycle 080</th>
<th>S3B 061</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCL ice sheet retracker</td>
<td>OCOG</td>
</tr>
<tr>
<td>All</td>
<td>34400</td>
<td>48913</td>
</tr>
<tr>
<td></td>
<td>-0.39</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>134.62</td>
<td>69.39</td>
</tr>
<tr>
<td>dh < 0.5 m</td>
<td>Observation [%]</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Mean [m]</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>Std [m]</td>
<td>0.23</td>
</tr>
<tr>
<td>dh < 1.0 m</td>
<td>Observation [%]</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Mean [m]</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>Std [m]</td>
<td>0.36</td>
</tr>
<tr>
<td>dh < 2.0 m</td>
<td>Observation [%]</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Mean [m]</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>Std [m]</td>
<td>0.50</td>
</tr>
<tr>
<td>dh < 5.0 m</td>
<td>Observation [%]</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Mean [m]</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>Std [m]</td>
<td>0.72</td>
</tr>
<tr>
<td>dh < 10.0 m</td>
<td>Observation [%]</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Mean [m]</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>Std [m]</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table 6.2 Crossover elevation difference statistics for Antarctica
Figure 6.3 SAR mode elevation differences at ground track crossover locations for Sentinel-3A, for the two retrackers (upper panel). Histograms of crossover elevation differences (lower panel).
Figure 6.4 SAR mode elevation differences at ground track crossovers for Sentinel-3B for the two retrackers (upper panel). Histograms of crossover elevation differences (lower panel)
Appendix A - Useful links

The Product Format Specification applicable to the Level-2 products assessed in this report is available in Sentinel Online, version 2.15:

https://sentinel.esa.int/documents/247904/2753172/Sentinel-3-Product-Data-Format-Specification-Level-2-Land.pdf/a176f07a-d9bd-4589-8c29-92c3487a9c7b?t=1611592513420

All cyclic performance reports are available on the mission performance cluster page at Sentinel-online webpage (https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-altimetry/mission-performance)

All plots were made using Python and PyGMT (0.5.0) a Python wrapper for The Generic Mapping Tools (GMT) Version 6.3.0 (Wessel et al. 2019; Uieda et al. 2021)
Appendix B - References

