S5P Mission Performance Centre
CLOUD [L2__CLOUD_] Readme

<table>
<thead>
<tr>
<th>document number</th>
<th>S5P-MPC-DLR-PRF-CLOUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>issue</td>
<td>2.0</td>
</tr>
<tr>
<td>date</td>
<td>2020-07-16</td>
</tr>
<tr>
<td>product version</td>
<td>V02.01.03</td>
</tr>
<tr>
<td>status</td>
<td>Released</td>
</tr>
<tr>
<td>Prepared by</td>
<td>A. Argyrouli (DLR)</td>
</tr>
<tr>
<td></td>
<td>F. Romahn (DLR)</td>
</tr>
<tr>
<td></td>
<td>S. Compernolle (BIRA-IASB)</td>
</tr>
<tr>
<td></td>
<td>J.-C. Lambert (BIRA-IASB)</td>
</tr>
<tr>
<td>Reviewed by</td>
<td>J.-C. Lambert (BIRA-IASB)</td>
</tr>
<tr>
<td></td>
<td>D. Loyola (DLR)</td>
</tr>
<tr>
<td></td>
<td>J. P. Veefkind (KNMI)</td>
</tr>
<tr>
<td>Approved by</td>
<td>A. Dehn (ESA)</td>
</tr>
<tr>
<td></td>
<td>C. Zehner (ESA)</td>
</tr>
</tbody>
</table>

Prepared by A. Argyrouli (DLR), F. Romahn (DLR), S. Compernolle (BIRA-IASB), J.-C. Lambert (BIRA-IASB)
Reviewed by J.-C. Lambert (BIRA-IASB), D. Loyola (DLR), J. P. Veefkind (KNMI)
Approved by A. Dehn (ESA), C. Zehner (ESA)
MPC Contributors
- R. Lutz (DLR)
- P. Wang (KNMI)
- W. Zimmer (DLR)
- L. Saavedra de Miguel (ESA/Serco)

MPC ESL-L2 Product Contributor
- MPC ESL-L2 Product Contributor
- MPC ESL-L2 Processor Contributor
- ESA S5p Mission Support

S5PVT Contributors
- T. Wagner (MPI-Mainz)
- R. Leigh (University of Leicester)

MPC ESL-L2 Product Contributor
- S5PVT, TROPGRAD Project, AO 28581
- S5PVT, UKCVTS5P Project, AO 28691

Signatures

MPC Product Lead / PRF Editor

Angelika Dehn

Digitally signed by Angelika Dehn
Date: 2020.07.16
16:56:22 +02'00'

A. Dehn (ESA) – Data Quality Manager

C. Zehner (ESA) – Mission Manager

1 The S5PVT AO project summaries can be found at https://earth.esa.int/web/guest/pi-community/search-results-and-projects/mission
CHANGE LOG

<table>
<thead>
<tr>
<th>Reason for change</th>
<th>Issue</th>
<th>Revision</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2: addition of version 01.01.08</td>
<td>1</td>
<td>5</td>
<td>18/03/2020</td>
</tr>
<tr>
<td>Updates for processor version 02.01.03</td>
<td>2</td>
<td>0</td>
<td>16/07/2020</td>
</tr>
</tbody>
</table>
1 Summary

This is the Product Readme File (PRF) of the Copernicus Sentinel 5 Precursor Tropospheric Monitoring Instrument (S5P/TROPOMI) Cloud Level 2 data product and is applicable for both the Near Real Time (NRTI) and Offline (OFFL) timeliness data products.

Product Identifier: L2__CLOUD_

Example filename:

SSP_OFFL_L2__CLOUD__20190729T012853_20190729T031221_09274_01_020103_20200511T161148.nc
SSP_NRTI_L2__CLOUD__20180704T085914_20180704T090414_03746_01_020103_20180704T094813.nc

The OFFL product has the following DOI: http://doi.org/10.5270/S5P-w1qgt16

The Readme file describes the current processing baseline, product and quality limitations, and product availability status. More information on this data product is available from the Sentinel product webpage:

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms,

and from the TROPOMI product webpage http://www.tropomi.eu/data-products.

Note that the cloud parameters are given for two different cloud models:

(a) CAL (Clouds-As-Layers) [cloud_fraction, cloud_top_height, cloud_optical_thickness]

(b) CRB Clouds-as-Reflecting-Boundaries) [cloud_fraction_crb, cloud_height_crb, cloud_albedo_crb]

Note that the cloud fraction in the CLOUD Level 2 product is the Radiometric Cloud Fraction (RCF).

As a user guideline for the data quality a qa_value is given with the data. In order to avoid misinterpretation of the data quality, it is recommended at the current stage to only use those pixels with a qa_value above 0.5.

Validation by Mission Performance Centre (MPC) Cal/Val experts and the Sentinel-5 Precursor Validation Team (S5PVT) conclude that version 1.x.x of the Cloud data is compliant with the requirements as defined in the S5P Calibration and Validation Plan [RD01], see Table 1.

The quality of the processor version 2.x.x has been assessed on a dedicated Test Data Set.

Up to date validation results are available in the Routine Operations Consolidated Validation Reports (ROCVR) that are accessible through the MPC Validation Data Analysis Facility (VDAF) website at http://mpc-vdaf.tropomi.eu. The ROCVR reports are issued quarterly and reports released after July 2020 include validation results based on processor version 2.x.x.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data product</th>
<th>Bias</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric Cloud Fraction</td>
<td>NRTI and OFFL</td>
<td>20%</td>
<td>0.05</td>
</tr>
<tr>
<td>Optical Thickness (Albedo)</td>
<td>NRTI and OFFL</td>
<td>20%</td>
<td>10 (0.05)</td>
</tr>
<tr>
<td>Cloud Height (Pressure)</td>
<td>NRTI and OFFL</td>
<td>20%</td>
<td>0.5 km (30 hPa)</td>
</tr>
</tbody>
</table>

Table 1: Cloud product requirements
2 Processing baseline description

Table 2 contains the history of the CLOUD processor versions. Note that the processor version for CLOUD is changing when there is a change to any of the products belonging to the UPAS processor suite (SO2, HCHO, O3 NRTI, O3 OFFL, Tropospheric O3, CLOUD) even if the change is not affecting the CLOUD product.

Please note that the processor version annotation in the filenames of OFFL orbits 4147 to 4158 are not correct. Those products are actually processed with the UPAS version 01.01.02, but in the filename it is written 01.01.01. For NRTI orbits 4243 to 4244 the processor version annotations are not correct. From orbit 4245 onwards all products have the correct (01.01.02) annotation in the filenames.

<table>
<thead>
<tr>
<th>Processor Version</th>
<th>In operation from</th>
<th>In operation until</th>
<th>Relevant improvements</th>
</tr>
</thead>
</table>
| 02.01.03 | NRTI: orbit 14285, 2020-07-16, OFFL: orbit 14239, 2020-07-13 | Current version | - New surface albedo retrieval algorithm (GE_LER) from TROPOMI replaced the MERIS climatology
- New OCRA cloud-free maps based on TROPOMI instead of OMI
- Since this version, SNPP data for UVIS and NIR are ingested and written into the OFFL CLOUD product
- New cloud flags have been introduced (e.g. ice-clouds)
- The required interpolation of cloud properties between band 3-4 and band 6 due to the instrument co-registration issues has been improved
- Updated metadata generation to reflect the improved spatial resolution after 6th Aug 2019
- Improved handling of the ECMWF information, reading and deriving snow-ice information, extracting Geopotential at Ground/Water Surface level, and propagating wind-information in the level 2 products (see section 6.1)
- Improved the parameter qa_value determination
- Invalid values of geolocation_flags set to correct values
- New variables added (see section 6.1) |
<p>| 01.01.08 | NRTI: orbit 12482, 2020-03-11, OFFL: orbit 12432, 2020-03-07 | Orbit 12485, 2020-07-16, Orbit 14238, 2020-07-12 | No changes with respect to previous version |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>NRTI: orbit</th>
<th>OFFL: orbit</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.06</td>
<td>7631, 2019-04-04</td>
<td>7542, 2019-03-28</td>
<td>- Cloud height values were too close to "a priori" values in previous versions (see section 4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Surface classification climatology updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fixed a bug in the interpolation of the surface albedo climatology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Variable cloud_top_pressure was erroneously not set to invalid when cloud_top_height was set to invalid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Variables related to precision (cloud_fraction_precision, cloud_fraction_crb_precision, etc) were erroneously very high on row indices 81 and 333 in previous versions (see section 4.2)</td>
</tr>
<tr>
<td>01.01.05</td>
<td>5932, 2018-12-05</td>
<td>5833, 2018-11-28</td>
<td>No changes with respect to previous version</td>
</tr>
<tr>
<td>01.01.02</td>
<td>4243, 2018-08-08</td>
<td>4147, 2018-08-01</td>
<td>Variable delta_time was not correctly calculated in previous version (see section 4.2)</td>
</tr>
<tr>
<td>01.01.01</td>
<td>3947, 2018-07-18</td>
<td>3848, 2018-07-11</td>
<td>- Solved a problem while computing time_coverage_start and time_coverage_end of a granule overpassing midnight (see section 4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Variable processing_quality_flags was not correctly calculated in previous version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The scan angle correction was not properly activated; fixed the calculation of the error of the variable cloud_optical_thickness</td>
</tr>
<tr>
<td>01.00.00</td>
<td>3745, 2018-07-04</td>
<td>3661, 2018-06-28</td>
<td>Initial operational version</td>
</tr>
</tbody>
</table>

Table 2: History of CLOUD processor versions. In orange, the data versions that are no longer available to the users on the Pre-operations hub.
3 Product Quality

3.1 Recommendations for data usage

In order to avoid misinterpretation of the data quality, it is recommended at the current stage to only use those TROPOMI pixels associated with a qa_value above 0.5. The qa_value summarizes the quality of the product by taking into consideration several aspects like the spectral channel quality flags from L1B data, geometry limitations (e.g. not reliable retrievals for SZA>75°), inhomogeneous scene warnings, high residual of the fitting process etc.

For further details, data users are encouraged to read the Product User Manual (PUM) and Algorithm Theoretical Basis Document (ATBD) associated with this data product, available on https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms.

3.2 Validation results

3.2.1 Status of product validation

Validation by MPC Cal/Val experts conclude that version 1.x.x of the Cloud data is in good overall agreement with (i) reference measurements collected from global ground-based networks, and (ii) the corresponding satellite data products from VIIRS & MODIS, and (iii) is compliant with the requirements as defined in the S5P Calibration and Validation Plan [RD01], see Table 1.

Up to date validation results are available in ROCVR reports that are accessible through the MPC VDAF website at http://mpc-vdaf.tropomi.eu. They are issued quarterly, and reports released after July 2020 include validation results based on processor version 2.x.x.

A manuscript detailing the comprehensive validation of the S5P CLOUD CAL and S5P CLOUD CRB data products using satellite and ground-based data is published (Compernolle et al., 2020) [RD08].
4 Data Quality Remarks

4.1 Known Data Quality Issues

Currently, the following data quality issues are known, not covered by the quality flags, and should be kept in mind when looking at the Cloud product itself.

An instrument feature: spatial mis-registration between TROPOMI bands 3-4 (OCRA, UV trace gas fitting window) and band 6 (ROCINN fitting window)

The band 3-4 (450 pixels per scanline) footprints are not fully aligned with the band 6 (448 pixels per scanline) ones. In the worst case, the miss-alignment can be in the order of half a ground pixel. The OCRA algorithm retrieves the Cloud Fraction at Bands 3 and 4 and interpolates it linearly, according to the covered area, to band 6. This is an a priori to ROCINN algorithm, which works in band 6. Over heterogeneous scenes the miss-registration might have a large impact on the data quality. The cloud height and optical thickness retrieved in band 6 are interpolated back to the band 3 footprints. Due to missing overlap with the band 6 footprints, the first pixel in band 3 (no overlap) and the second pixel in band 3 (only partial overlap), do not contain cloud products with full quality. This is also reflected in the cloud data qa_value.

Insensitivity to very thin clouds

The retrieval takes place in the UV-VIS-NIR bands only up to 770 nm. In this part of the spectrum, the optically thin clouds (i.e., COT < 5) are retrieved less accurately compared to, for example, MODIS that uses also channels in μm range.

Treatment of multi-layer clouds

The cloud retrieval algorithm assumes that there is a single-cloud layer in the atmosphere. For cases with more than one cloud present, the retrieved parameters might be under- or over-estimated. For more details about the quantification of multi-layer clouds, refer to Loyola et al. (2018) [RD04].

Treatment of ice clouds

Regarding the CAL model, the current parameterization of clouds is based on liquid water clouds. Therefore, ice or mixed-phase clouds might not be accurately retrieved. From the initial preliminary validation, it seems that the ice clouds are retrieved with an overestimated optical thickness. Since version 02.xx.xx, a new variable called cloud_phase is introduced to the product and discriminates between liquid water and ice clouds.

Snow/Ice conditions

Over bright surfaces (especially when there is no permanent snow/ice coverage), the performance of the algorithm is decreased. This might result in overestimation of the cloud fraction; cloud top height is very close to the surface height and the cloud optical thickness overestimated.

Unknown straylight impact in the NIR

The TROPOMI out-of-band straylight effect is not yet well assessed. The L1B radiance data in bands 5 and 6 (near infrared wavelength range) are corrected for the out of band straylight, but the correction scheme has not been fully validated. The pixels at the poles seem to be more sensitive to non-optimal straylight correction.

Saturation

Some TROPOMI pixels might be affected by saturation. Those pixels should be flagged and their quality is reflected in the qa_value. Nevertheless, in the vicinity of saturated pixels there might be pixels also affected by saturation due to the so-called blooming effect. The blooming effect will be addressed in a future L1B release. For those pixels, the ROCINN cloud parameters tend to be overestimated. In general, saturation is present over bright scenes (e.g. fully cloudy scenes with large optical depths).
Metadata values exchanged

The global attributes geospatial_lon_min and geospatial_lon_max values are exchanged; therefore, the user is advised to switch the values for these fields, making note that the geospatial_lat_min and geospatial_lat_max values are correct. This is an issue traceable to L1b data (version 01.00.00) and is corrected in the following versions of the Level 1B processor.

4.2 Solved Data Quality Issues

Wrong Sensing dates in metadata (solved in version 01.01.01)

Note that there is a non-systematic problem in the sensing dates around mid-night: the reported dates in the global attributes can be wrong by one day ahead. This issue is solved with the activation of version 01.01.01 (see Table 2).

NRTI data gaps northern hemisphere (solved in version 01.01.01)

The NRTI data stream shows data gaps over Kazakhstan, southern part of Russia and Canada due to a miss-configuration of the processing facility. This issue is solved with the activation of processor version 01.01.01 mid-July 2018 (see Table 2).

Bug in delta_time variable (solved in version 01.01.02)

In version 01.01.01 (see Table 2) the delta_time variable might be wrong. The error is usually in the range of less than a minute but in the worst case it might be up to 45 min. It is therefore recommended not to use the time variable for data with this processor version.

Orbit numbering in NRTI and OFFL (solved in version 01.01.05)

Note that NRTI orbit numbers are set with respect to the downlink orbit while OFFL orbit numbers are set with respect to the equator crossing time. This creates an inconsistency between the NRTI and OFFL orbit numbers, which is removed with the activation of processor version 01.01.05 (see Table 2).

Bug with cloud height (solved in version 01.01.06)

In versions prior to 01.01.06, for some pixels the cloud height was not correctly retrieved. The cloud_height_crb and cloud_top_height variables were converging to the a-priori value of 3.8 km. From version 01.01.06, this issue is resolved (see Table 2).

Variables related to precision extremely high for rows 81 and 333 (solved in version 01.01.06)

Variables related to the precision: cloud_fraction_precision (CAL), cloud_fraction_crb_precision (CRB), cloud_base_height_precision (CAL), cloud_top_height_precision (CAL), cloud_height_crb_precision (CRB) are erroneously very high on row indices 81 and 333. Note that for neighbouring rows, the problem with the "precision" variables disappears. qa_value is often 100, thus these erroneous values are not filtered. From version 01.01.06, this issue is resolved (see Table 2).

Bug with missing fillvalues in the cloud pressure (solved in version 01.01.06)

In versions prior to 01.01.05, the cloud_top_pressure and cloud_pressure_crb did not contain fillvalues for clear-sky scenes (i.e., when cloud fraction is 0). Instead, the cloud pressure contained a valid value equal to the surface pressure. For versions 01.01.06 and higher, this bug is fixed.

Metadata/Attributes (solved with version 02.01.02)

The spatial resolution of the TROPOMI measurements is improved by bringing the along track ground pixel size from 7.0 to 5.5 Km starting on 6th August 2019. Note that, after this operations change, the metadata/Attributes fields related to the spatial resolution, remained unchanged (hence not aligned to the improved resolution).
4.3 Data features

This section describes some characteristics of the data that might seem anomalous, however they are physically correct and not related to any problem.

Pixel geolocation around North Pole (feature)

The solar irradiance is measured on a daily basis over the North Pole at a reference azimuth angle to remove seasonal effects on the measurements. To this end, a yaw manoeuvre is executed when the instrument is still in radiance mode, causing possible distortion on the scanlines observed during this manoeuvre (i.e. crossing scanlines, "bow-tie" ground pixel shape instead of rectangular). This occurs at most during the last 26 seconds of radiance measurements in few orbits (7-9 per week). Though this may seem anomalous, it is physically correct, and not related to any problem on the data geolocation.

4.4 Mission Operations Changes

A change in the Copernicus Sentinel 5P operations scenario, increasing the spatial resolution from 7.0 km to 5.5 km along track for all measurements, became operational starting from 6 August 2019, orbit 9388.
5 Algorithm Change Record

For a detailed description of the L2__CLOUD__ algorithms, please refer to the ATBD [RD02] or to Loyola et al. (2018) [RD04] and Loyola et al. (2020) [RD07].
6 Data Format

The product is stored as NetCDF4 file. The NetCDF4 file contains both the data and the metadata for the product.

For OFFL data the product is stored as a single file per satellite orbit, for NRTI data the product is stored as multiple files per orbit.

Please note that consecutive data granules of the NRTI product show an overlap of about 12 scan lines. Details of the data format are provided in the Product User Manual (PUM) [RD03].

6.1 Data format changes

6.1.1 Version 02.01.02

New Variables

/PRODUCT/latitude_nir
/PRODUCT/longitude_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/latitude_bounds_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/longitude_bounds_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/geolocation_flags_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/solar_zenith_angle_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/solar_azimuth_angle_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/viewing_zenith_angle_nir
/PRODUCT/SUPPORT_DATA/GEOLOCATIONS/viewing_azimuth_angle_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/sea_ice_cover
/PRODUCT/SUPPORT_DATA/INPUT_DATA/snow_cover
/PRODUCT/SUPPORT_DATA/INPUT_DATA/northward_wind
/PRODUCT/SUPPORT_DATA/INPUT_DATA/eastward_wind
/PRODUCT/SUPPORT_DATA/INPUT_DATA/viirs_cloud_fraction_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/viirs_cloud_fraction
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_top_temperature
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_phase
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_height
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_height_precision
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_pressure
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_pressure_precision
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_height_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_albedo_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/effective_scene_albedo_precision_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/condition_number_ge_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/degrees_of_freedom_ge_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/shannon_information_content_ge_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/fitted_root_mean_square_ge_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/number_of_iterations_ge_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_altitude_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_pressure_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_classification_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_albedo_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/snow_ice_flag_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_fraction_apriori_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/coregistration_weight_sums_ge
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_altitude_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_pressure_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_classification_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/surface_albedo_nir
/PRODUCT/SUPPORT_DATA/INPUT_DATA/snow_ice_flag_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_fraction_apriori_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/coregistration_weight_sums_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_height_crbo_nir
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_albedo_crbo
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_fraction_crbo
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/surface_albedo_fitted_crbo
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_height_crbo_precision
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_albedo_crbo_precision
/PRODUCT/SUPPORT_DATA/DETAILED_RESULTS/cloud_fraction_crbo
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/cloud_fraction_crb_precision_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/surface_albedo_fitted_crb_precision_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS(degrees_of_freedom_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_root_mean_square_crb
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/coregistration_weight_sums_crb
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/cloud_top_height_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/cloud_optical_thickness_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/surface_albedo_fitted_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/cloud_top_height_precision_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/cloud_optical_thickness_precision_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/surface_albedo_fitted_precision_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/degrees_of_freedom_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/number_of_iterations_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_root_mean_square_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/coregistration_weight_sums_cal

Renamed variables

/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/regularization_parameter_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/regularization_parameter_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/condition_number_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/condition_number_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/shannon_information_content_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/shannon_information_content_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/convergence_flag_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/convergence_flag_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_state_vector_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_state_vector_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/covariance_matrix_diagonal_crb → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/covariance_matrix_diagonal_crb_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/regularization_parameter → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/regularization_parameter_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/condition_number → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/condition_number_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/shannon_information_content → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/shannon_information_content_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/convergence_flag → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/convergence_flag_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_state_vector → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/fitted_state_vector_nir
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/covariance_matrix_diagonal → /PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/covariance_matrix_diagonal_nir

Datatype changes - from NC_USSHORT to NC_FLOAT

/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/number_of_iterations
/PRODUCT_SUPPORT_DATA/DETAILED_RESULTS/number_of_iterations_crb
New Metadata

Added “Status_BG” as global attribute.
7 Product Availability

All S5P/TROPOMI data are available on the Copernicus Open Data Hub https://scihub.copernicus.eu.

For further questions regarding S5P/TROPOMI data products please contact EOSupport@Copernicus.esa.int.

The access and use of any Copernicus Sentinel data available through the Copernicus Sentinel Data Hub is governed by the Legal Notice on the use of Copernicus Sentinel Data and Service Information and is given here:

8 References

[RD01] Sentinel-5 Precursor Calibration and Validation Plan for the Operational Phase
source: ESA; ref: ESA-EOPG-CSCOP-PL-0073;
url: https://sentinel.esa.int/documents/247904/2474724/Sentinel-5P-Calibration-and-Validation-Plan.pdf

[RD02] Sentinel-5precursor/TROPOMI Level 2 Algorithm Theoretical Basis Document Cloud
source: DLR; ref: S5P-L2-DLR-ATBD-400I;
url: https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Clouds

[RD03] Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Cloud
source: DLR; ref: S5P-L2-DLR-PUM-400I;
url: https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Cloud

More information on this data product is available from the Sentinel product webpage:
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms,
and from the corresponding TROPOMI product webpage http://www.tropomi.eu/data-products.
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Basis Document</td>
</tr>
<tr>
<td>BIRA-IASB</td>
<td>Royal Belgian Institute for Space Aeronomy</td>
</tr>
<tr>
<td>CAL</td>
<td>Clouds As Layers</td>
</tr>
<tr>
<td>CF</td>
<td>Cloud Fraction (fractional cloud cover)</td>
</tr>
<tr>
<td>CLOUDNET</td>
<td>Cloud properties monitoring Network</td>
</tr>
<tr>
<td>COT</td>
<td>Cloud Optical thickness</td>
</tr>
<tr>
<td>CRB</td>
<td>Clouds as Reflecting Boundaries</td>
</tr>
<tr>
<td>CTH</td>
<td>Cloud Top Height</td>
</tr>
<tr>
<td>DLR</td>
<td>German Aerospace Center / Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>DOI</td>
<td>Digital Object Identifier</td>
</tr>
<tr>
<td>EARLINET</td>
<td>European Aerosol Research Lidar Network</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESL</td>
<td>Expert Support Laboratory</td>
</tr>
<tr>
<td>GOME(-2)</td>
<td>Global Ozone Monitoring Experiment(-2)</td>
</tr>
<tr>
<td>KNMI</td>
<td>Royal Netherlands Meteorological Institute</td>
</tr>
<tr>
<td>lidar</td>
<td>Light Detection And Ranging</td>
</tr>
<tr>
<td>MPC</td>
<td>Mission Performance Centre</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRTI</td>
<td>Near Real Time (timeliness of products)</td>
</tr>
<tr>
<td>OFFL</td>
<td>Offline (timeliness of products)</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>PRF</td>
<td>Product Readme File</td>
</tr>
<tr>
<td>PUM</td>
<td>Product User Manual</td>
</tr>
<tr>
<td>QWG</td>
<td>Quality Working Group</td>
</tr>
<tr>
<td>ROCVR</td>
<td>Routine Operations Consolidated Validation Report</td>
</tr>
<tr>
<td>RCF</td>
<td>Radiometric Cloud Fraction</td>
</tr>
<tr>
<td>S5P</td>
<td>Sentinel-5 Precursor</td>
</tr>
<tr>
<td>S5PVT</td>
<td>Sentinel-5 Precursor Validation Team</td>
</tr>
<tr>
<td>Suomi NPP</td>
<td>Suomi National Polar-orbiting Partnership</td>
</tr>
<tr>
<td>TROPOMI</td>
<td>Tropospheric Monitoring Instrument</td>
</tr>
<tr>
<td>VDAF</td>
<td>Validation Data Analysis Facility</td>
</tr>
<tr>
<td>VIIRS</td>
<td>Visible Infrared Imaging Radiometer Suite</td>
</tr>
</tbody>
</table>