

Input/output data specification for the TROPOMI L01b data processor

document number: S5P-KNMI-L01B-0012-SD

CI identification : CI-6510-IODS

issue : 11.0.0 date : 2022-03-31 status : released svn revision : 25047

Copyright statement

This work is licensed under

the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© creative commons

Disclaimer

The Royal Netherlands Meteorological Institute KNMI does not represent or endorse the accuracy or reliability of any of the information or content (collectively the "Information") contained in this document. The reader hereby acknowledges that any reliance upon any Information shall be at the reader's sole risk. The Royal Netherlands Meteorological Institute KNMI reserves the right, in its sole discretion and without any obligation, to make improvements to the Information or correct any error or omissions in any portion of the Information.

THE INFORMATION IS PROVIDED BY THE ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE KNMI ON AN "AS IS" BASIS, AND THE ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE KNMI EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE INFORMATION. IN NO EVENT SHALL THE ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE KNMI BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE INFORMATION.

Contributing authors

Jonatan Leloux Nico Rozemeijer Rob van Swol Frank Vonk

Document change record

Issue	Date	Item	Comments			
0.1.0	2012-12-03	All	Prepared for review.			
0.2.0	2013-02-13	All	Processed informal review comments; see S5P-KNMI-L01B-1012-LI-RLF issue A.4.			
1.0.0	2013-03-05	All	Modifications based on comments received on version 0.2.0. Editorial modifications.			
1.0.1	2013-07-12	All	New sections on metadata (sections 7, 8 and 10.2). New section on input data (section 5). Redefinition of time variable. Redefinition of noise and error variables for radiance and irradiance. spectral_wavelength removed (radiance). spectral_wavelength replaced by calibrated_wavelength (irradiance). Reformatting of tables. Updated section 9.1 on L1b file structure.			
1.0.2	2013-08-29	All	Modifications based on comments from internal review. Measurement class renamed to Processing class. Slicing for NRT products. Redefinition of quality_level. New TROPOMI logo			
1.1.0	2013-09-11	All	Updated section on variable attributes Editorial modifications			
1.2.0	2013-11-20	All	Processed formal review comments; see S5P-KNMI-L01B-1012-LI-RLF issue B.3.			
2.0.0	2013-12-05	All	Modifications based on comments received on version 1.2.0. Editorial modifications.			
2.1.0	2014-06-05	All	Document ported from Word to LaTeX. Definition of engineering product added (section 7.3.4). Product sizes table updated (Appendix A). Processing classes table updated (Appendix B). Type of variable time changed to int (section 8.4). Variables time and delta_time moved to ObservationsGroup (sections 7.3.1 and 7.3.2). Variables radiance, irradiance and small_pixel_radiance are normalized to 1AU. Variable descriptions added for instrument_settings, binning_table, housekeeping_data (sections 8.42 - 8.44). Moved sections on metadata models and profiles to document [RD9]).			
2.2.0	2014-06-27	All	Modifications resulting from review comments. Ordering of dimensions in netCDF product changed.			
2.3.0	2014-07-07	All	Some additional modifications resulting from review comments.			
3.0.0	2014-07-07	All	Some additional modifications resulting from review comments.			
3.0.1	2014-10-31	All	EO-FFS Fixed Header example added.			
3.0.2	2014-11-18	All	Corrected EO-FFS example.			
4.0.0	2014-12-09	All	Prepared for processor release 0.8.0			
4.1.0	2015-09-21	All	Completed description of output products; prepared for processor release 0.9.0			
5.0.0	2015-09-22	Title page, change record, references	Updated referenced documents; changed license.			

Issue	Date	Item	Comments			
6.0.0	2016-04-01	All	Updated data volume estimates; Prepared for processor release 0.10.0			
7.0.0	2016-09-30	All	Added missing NetCDF4 global attributes. Regenerated group contents tables for L1b products. Regenerated cdl-descriptions of L1b product variables. Prepared for processor release 0.11.0			
8.0.0	2017-06-01	All	Add out of band (oob) parameters to IODS. Prepare for processor release 0.12.0			
8.1.0	2018-03-29	All	Preparations for L01b release 01.00.00			
9.0.0	2018-04-01	All	Final version for L01b release 01.00.00			
9.1.0	2019-07-19	All	Updated section 4 to be in line with [RD10]. Section 5: Added support for IERS bulletins in XML format. Updated typical product dimension sizes in section 7.2.3 and appendix A. Regenerated contents in sections 7.3 and 8 to be in line with L01b release 02.00.00. Review version for L01b release 02.00.00			
10.0.0	2019-07-19	All	Minor textual and style updates after review. Release version for L01b release 02.00.00			
11.0.0	2022-03-31	All	Minor bugfixes; Added two new output datasets: satellite_shadow_fraction and monitor_gain_drift_factor; Added satellite eclipse flags to the measurement_quality; Added clarifications/recommendations on how to use the various quality flags; Added remark that irradiance product will not be generated in case of insufficient data; Added equations for noise and error calculation; Release version for L01b release 02.01.00.			

Contents

Docum	ent change record
1	Introduction
1.1	Identification
1.2	Purpose and objective
1.3	Document overview
2	Applicable and reference documents
2.1	Applicable documents
2.2	Standard documents
2.3	Reference documents
2.4	Electronic references
3	Terms, definitions and abbreviated terms
3.1	Terms and definitions
3.2	Acronyms and Abbreviations
4	TROPOMI system overview
- 4.1	Mission
4.2	Instrument description
4.2 4.3	Instrument operations
4.3.1	Co-addition and small pixels.
4.3.1 4.3.2	Earth radiance measurements
4.3.2 4.3.3	Solar irradiance measurements
4.3.4	Background measurements
4.3.4 4.3.5	Calibration measurements
5	Input data products
6	TROPOMI L1b product overview
7	TROPOMI L1b product description
7.1	L1b file structure
7.1.1	L1b logical file name convention
7.1.2	L1b header file
7.2	L1b product data structure
7.2.1	NetCDF File Structure
7.2.2	Naming conventions
7.2.3	Dimensions and coordinate variables
7.3	L1b products
7.3.1	Radiance products
7.3.2	Irradiance products
7.3.3	Calibration products
7.3.4	Engineering product
8	TROPOMI L1b product specification
3.1	NetCDF4 global attributes
3.2	Metadata specification
8.3	Fill values
3.4	Variable: time
8.5	Variable: delta_time
8.6	Variable: ground_pixel
8.7	Variable: pixel
8.8	Variable: scanline
8.9	Variable: spectral_channel
8.10	Variable: radiance
8.11	Variable: radiance_noise
8.12	Variable: radiance_error
8.13	Variable: irradiance
8.14	Variable: irradiance_noise
8.15	Variable: irradiance_error

8.16	Variable: small_pixel_radiance
8.17	Variable: spectral_channel_quality
8.18	Variable: ground_pixel_quality
8.19	Variable: quality_level
8.20	Variable: measurement_quality
8.21	Variable: detector_row_qualification
8.22	Variable: detector_column_qualification
8.23	Variable: calibrated_wavelength
8.24	Variable: calibrated_wavelength_error
8.25	Variable: latitude
8.26	Variable: longitude
8.27	Variable: latitude_bounds
8.28	Variable: longitude_bounds
8.29	Variable: solar_zenith_angle
8.30	Variable: solar_elevation_angle
8.31	Variable: solar_azimuth_angle
8.32	Variable: viewing_zenith_angle
8.33	Variable: viewing_azimuth_angle
8.34	Variable: satellite_latitude
8.35	Variable: satellite_latitude
8.36	Variable: satellite_longitude
8.37	Variable: satellite_artitude Variable: satellite_orbit_phase
8.38	<u>-</u>
	Variable: satellite_shadow_fraction
8.39	Variable: earth_sun_distance
8.40	Variable: processing_class
8.41	Variable: instrument_configuration
8.42	Variable: instrument_settings
8.42.1	UVN product: instrument_settings
8.42.2	SWIR product: instrument_settings
8.43	Variable: binning_table
8.44	Variable: housekeeping_data
8.45	Variable: measurement_to_detector_row_table in engineering product
8.46	Variable: nominal_wavelength
8.47	Variable: nominal_wavelength_error
8.48	Variable: sample_cycle
8.49	Variable: sample_cycle_length
8.50	Variable: monitor_straylight_observed
8.51	Variable: offset_readout_register
8.52	Variable: irradiance_avg
8.53	Variable: irradiance_avg_noise
8.54	Variable: irradiance_avg_error
8.55	Variable: irradiance_avg_quality_level
8.56	Variable: irradiance_avg_std
8.57	Variable: irradiance_avg_spectral_channel_quality
8.58	Variable: irradiance_avg_spectrar_onamicr_quarry
8.59	Variable: radiance_avg_cor
8.60	Variable: radiance_avg_error
8.61	Variable: radiance_avg_error Variable: radiance_avg_noise
8.62	Variable: radiance_avg_noise
8.63	
8.64	Variable: radiance_avg_spectral_channel_quality
	Variable: radiance_avg_std
8.65	Variable: radiance_avg_row
8.66	Variable: radiance_avg_data
8.67	Variable: percentage_ground_pixels_geolocation_error
8.68	Variable: percentage_spectral_channels_rts
8.69	Variable: percentage_spectral_channels_per_scanline_transient
8.70	Variable: oob_sl_nir_corr_row_avg_blu_irr
8.71	Variable: oob_sl_nir_dp_factor_blu_irr

8.72	Variable:	oob_sl_nir_corr_row_avg_red_irr9
8.73		oob_sl_nir_dp_factor_red_irr
8.74	Variable:	oob_sl_nir_corr_row_avg_blu_rad
8.75	Variable:	oob_sl_nir_dp_factor_blu_rad
8.76	Variable:	oob_sl_nir_corr_row_avg_red_rad9
8.77	Variable:	oob_sl_nir_dp_factor_red_rad
8.78	Variable:	solar_azimuth_angle_irr_cal9
8.79		irradiance_avg_data9
8.80		solar_azimuth_angle_rad_cal9
8.81	Variable:	signal_avg 9
8.82		signal_avg_error
8.83		signal_avg_noise 9
8.84		signal_avg_quality_level9
8.85		signal_avg_spectral_channel_quality 9
8.86		signal_avg_std9
8.87		signal_avg_data 9
8.88		signal_avg_row9
8.89		signal_avg_col
8.90		small_pixel_signal
8.91		percentage-spectral_channels_per_scanline_rts
8.92		percentage-scanlines_with_processing_steps_skipped
8.93		percentage_scanlines_with_residual_correction_skipped
8.94		percentage_ground_pixels_descending_side_orbit
8.95		percentage_spectral_channels_per_scanline_defective
8.96		percentage_scanlines_in_spacecraft_manoeuvre
8.97		monitor_straylight_calculated
8.98		monitor_radiance_wavelength_shift
8.99		monitor_gain_alignment_factor
8.100		monitor_gain_drift_factor
8.101		measurement_to_detector_row_table
8.102		
8.102		signal 10 signal_error 10
		•
8.104 8.105		signal_noise
		percentage_ground_pixels_night
8.106		percentage_spectral_channels_transient
8.107		offset_prepostscan_pixels
8.108		percentage_spectral_channels_per_scanline_saturated
8.109		monitor_smear_calculated
8.110		radiance_avg_col
8.111		offset_overscan_rows
8.112		percentage_spectral_channels_per_scanline_underflow
8.113		offset_overscan_columns
8.114		percentage_scanlines_with_solar_angles_out_of_nominal_range 10
8.115		small_pixel_irradiance
8.116		monitor_overscan_rows
8.117		detector_pixel_filling_histogram10
8.118		offset_static_ckd
8.119	Variable:	percentage_spectral_channels_defective 10
8.120	Variable:	percentage_spectral_channels_missing 10
8.121		percentage_scanlines_in_south_atlantic_anomaly 10
8.122		storage_time
8.123		percentage_spectral_channels_per_scanline_processing_error 11
8.124	Variable:	percentage_spectral_channels_saturated
8.125	Variable:	irradiance_avg_row
8.126		percentage_spectral_channels_processing_error11
8.127	Variable:	percentage_spectral_channels_underflow
8.128	Variable:	monitor_read_out_register
8.129	Variable:	percentage_ground_pixels_sun_glint11

Input/ou issue 11		KNMI-L01B-0012-SD- Page 9 of 116	
8.130	Variable: monitor_radiance		112
8.131	Variable: percentage_ground_pixels_geometric_boundary_c		112
8.132	Variable: monitor_smear_observed		112
8.133	Variable: percentage_spectral_channels_per_scanline_mis	sing	113
8.134	Variable: percentage_ground_pixels_solar_eclipse	-	113
Append	lix A Estimated product size		114

Processing classes

115

Appendix B

1 Introduction

1.1 Identification

This document, identified by S5P-KNMI-L01B-0012-SD, describes the data format of the TROPOMI Level-1b (L1b) data products. The logic for the L1b data format results from an analysis of different applicable standards and best practices in the Earth Observation (EO) data field. This document is identified in [AD1] as CI-6510-IODS.

1.2 Purpose and objective

The TROPOMI L01b processor developed by KNMI produces L1b data products from L0 input data and auxiliary data products. The TROPOMI L1b data products distinguish radiance, irradiance, calibration and engineering data. Although these products differ in their applicability, the objective is to define a common data format for all TROPOMI L1b products.

This document mainly addresses the output data of the L01b processor (i.e. the L1b data products), providing detailed specifications of the different L1b products. The input data (the Level 0 products and the various auxiliary products) are also identified and summarized in this document. One type of auxiliary data product is the calibration key data. Document [RD11] describes the types of calibration key data files. The L0 products are specified in [AD2].

1.3 Document overview

This document describes the official products that are the result from the Level 0 to Level 1b processing of the data collected by TROPOMI onboard the Sentinel-5 Precursor satellite. For all of the defined data products detailed technical information with respect to their contents and data formats is provided. This allows processing facilities and scientists to develop software for extracting information and in particular to produce higher level (i.e. Level 2) products.

The document is based on the results of discussions with user communities and of studies on data interoperability standards and on the lessons learned from previous missions (i.e. OMI).

After a short introduction of the TROPOMI system, its mission, the geophysical phenomena studied and the parameters measured by the detectors, the L1b products are described. Product specifications are presented in terms of file naming, file format and file structure. Comprehensive descriptions and specifications of all variables contained in the products are presented. A more detailed description of the TROPOMI system can be found in [RD10], which in addition provides a description of the algorithms in the TROPOMI L01b processor.

Applicable and reference documents

2.1 Applicable documents

[AD1] Software development plan for TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0002-PL; issue: 2.0.0; date: 2012-11-14.

[AD2] Sentinel-5 precursor PDGS L0 product format specification.

source: DLR; ref: S5P-PDGS-DLR-ISP-3011; issue: 1.3; date: 2015-11-30.

[AD3] Software product assurance plan for TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0003-PL; issue: 2.0.0; date: 2012-11-14.

[AD4] Software system specification for TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0005-RS; issue: 3.0.0; date: 2012-11-21.

- [AD5] Tailoring of the Earth Observation File Format Standard for the Sentinel 5-Precursor Ground Segment. source: ESA; ref: S5P-TN-ESA-GS-106; issue: 2.2; date: 2015-02-20.
- [AD6] Earth Observation Ground Segment File Format Standard.

source: ESA; ref: PE-TN-ESA-GS-0001; issue: 2.0; date: 2012-05-03.

2.2 Standard documents

[SD7] Space Engineering – Software.

source: ESA/ECSS; ref: ECSS-E-ST-40C; date: 2009-03-06.

[SD8] Space Product Assurance - Software Product Assurance.

source: ESA/ECSS; ref: ECSS-Q-ST-80C; date: 2009-03-06.

2.3 Reference documents

[RD9] Metadata specification for the TROPOMI L1b products.

source: KNMI; ref: S5P-KNMI-L01B-0014-SD; issue: 7.0.0; date: 2022-03-31.

[RD10] Algorithm theoretical basis document for the TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0009-SD; issue: 10.0.0; date: 2022-03-31.

[RD11] Calibration key data specification for the TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0028-SD; issue: 8.0.0; date: 2022-03-31.

[RD12] Terms, definitions and abbreviations for TROPOMI L01b data processor.

source: KNMI; ref: S5P-KNMI-L01B-0004-LI; issue: 3.0.0; date: 2013-11-08.

[RD13] NetCDF Climate and Forecast (CF) Metadata Conventions.

source: CFConventions; ref: n/a; issue: 1.6; date: 2011-12-05.

[RD14] INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN ISO 19119.

source: EC JRC; ref: MD IR and ISO v1 2 20100616; issue: 1.2; date: 2010-06-16.

[RD15] Earth Observation Metadata profile of Observations Measurements.

source: OGC; ref: OGC 10-157r4; issue: 1.0.3-DRAFT; date: 2014-01-10.

[RD16] Command and Telemetry Handbook.

source: Dutch Space; ref: TROP-DS-0000-RP-0579; issue: 4.0; date: 2016-02-09.

2.4 Electronic references

- [ER17] http://www.iers.org.
- [ER18] http://www.unidata.ucar.edu/software/netcdf/docs/.
- $[\mathsf{ER19}]\ \mathtt{http://en.wikipedia.org/wiki/University_Corporation_for_Atmospheric_Research.}$
- [ER20] http://wiki.esipfed.org/index.php/Category:Attribute_Conventions_Dataset_ Discovery.
- [ER21] http://www.unidata.ucar.edu/software/thredds/current/tds/.
- [ER22] http://wiki.esipfed.org/index.php/NetCDF,_HDF,_and_ISO_Metadata.

3 Terms, definitions and abbreviated terms

Terms, definitions and abbreviated terms that are used in the development program for the TROPOMI L01b data processor are described in [RD12]. Terms, definitions and abbreviated terms that are specific for this document can be found below.

3.1 Terms and definitions

There are no terms and definitions specific to this document.

3.2 Acronyms and Abbreviations

ACDD Attribute Convention for Dataset Discovery

APID Application Process Identifier

ADN ADEPT/DLESE/NASA

AQA Automated Quality Assurance

AU Astronomical Unit

CCSDS Consultative Committee for Space Data Systems

CF Climate and Forecast
CKDS Calibration Key Data Set
DEM Detector Electronics Module
DIF Data Interchange Format
EC European Commission

EO-FFS Earth Observation Ground Station File Format Standard

EOP Earth Observation Product ESA European Space Agency

ESIP Federation of Earth Science Information Partners

EU European Union

FGDC Federal Geographic Data Committee

GEMET GEneral Multilingual Environmental Thesaurus
GMES Global Monitoring for Environment and Security

HDF Hierarchical Data Format

HMA Heterogeneous Mission Accessibility

IcID Instrument Configuration ID

ID Identifier

IERS International Earth Rotation and Reference Systems Service
INSPIRE Infrastructure for Spatial Information in the European Community

IODS Input/Output Data Specification
ISM Instrument Specific Module
JRC Joint Research Centre
LED Light-Emitting Diode

LTAN Local Solar Time at Ascending Node

NcML NetCDF Markup Language
NetCDF Network Common Data Form

NRT Near Real Time
NUG NetCDF User Guide

OGC Open Geospatial Consortium

QI Quality Indicator

SAA South Atlantic Anomaly

SZA Solar Zenith Angle

THREDDS Thematic Realtime Environmental Distributed Data Services

TOA Top Of Atmosphere

UCAR University Corporation for Atmospheric Research

UML Unified Modeling Language
UTC Coordinated Universal Time
WGS World Geodetic System
WLS White Light Source

XML Extensible Markup Language

4 TROPOMI system overview

4.1 Mission

Copernicus – previously known as GMES¹ – is the European programme for the establishment of a European capacity for Earth Observation and is a joint initiative of the European Community and the European Space Agency ESA. The overall objective of the initiative is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and high quality data, information, services and knowledge. The Declaration on the GMES Space Component Programme states that the Sentinel-5 Precursor (S5p) mission will be implemented as part of the initiative.

The S5p mission is a single-payload satellite in a low Earth orbit that provides daily global information on concentrations of trace gases and aerosols important for air quality, climate forcing, and the ozone layer. The payload of the mission is the TROPOspheric Monitoring Instrument (TROPOMI), which is jointly developed by The Netherlands and ESA. The instrument consists of a spectrometer with spectral bands in the ultraviolet, the visible, the near-infrared and the shortwave infrared. The selected wavelength range for TROPOMI allows observation of key atmospheric constituents, including ozone (O_3) , nitrogen dioxide (NO_2) , carbon monoxide (CO), sulfur dioxide (SO_2) , methane (CH_4) , formaldehyde (CH_2O) , aerosols and clouds.

4.2 Instrument description

The TROPOMI instrument (TROPOMI) is a space-borne nadir-viewing hyperspectral imager with four separate spectrometers covering non-overlapping and non-contiguous wavelength bands between the ultraviolet and the shortwave infrared. The instrument is the payload on the Copernicus Sentinel 5 Precursor mission.

The purpose of TROPOMI is the measurement of atmospheric properties and constituents. The instrument uses passive remote sensing techniques to attain its objective by measuring at the top of the atmosphere the solar radiation reflected by and radiated from the Earth. The instrument operates in a push-broom configuration with a wide swath. Light from the entire swath is recorded simultaneously and dispersed onto two-dimensional imaging detectors: the position along the swath is projected onto one direction of the detectors, and the spectral information for each position is projected on the other direction.

The instrument images a strip of the Earth on a two dimensional detector for a period of approximately 1 second during which the satellite moves by about 7km. This strip has dimensions of approximately 2600 km in the direction across the track of the satellite and 7km in the along-track direction. After the 1 second measurement a new measurement is started thus the instrument scans the Earth as the satellite moves. The two dimensions of the detector are used to detect the different ground pixels in the across track direction and for the different wavelengths. This measurement period can be varied, allowing the along-track sampling distance to be lowered down to 5.5 km. The measurement principle of TROPOMI is shown in Figure 1.

TROPOMI utilizes a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument.

Each of the detectors is divided in two halves, which yields a total of eight spectral bands. Table 1 summarizes the main characteristics of each of the TROPOMI optical spectrometers and the definition of the spectral bands.

4.3 Instrument operations

For TROPOMI instrument operations, an orbital scheduling approach is used. An orbit is defined from spacecraft midnight to spacecraft midnight. Earth radiance measurements will be performed on the day side of the orbit. At the north side of the orbit, near the day-night terminator, the Sun is visible in the instrument's solar port. Approximately once a day, a solar irradiance measurement is performed. The night side of the orbit is used for calibration and background measurements. The following constraints should be taken into account for the calibration measurements:

1. Background and calibration measurements can only be performed when the spacecraft is in full eclipse.

¹ Global Monitoring for Environment and Security

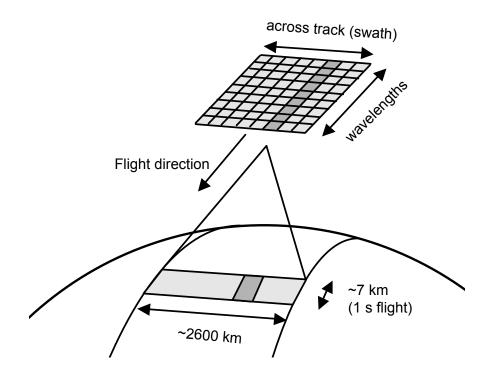


Figure 1: TROPOMI measurement principle

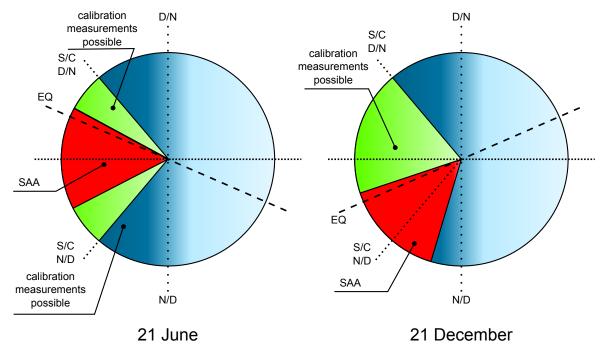

Spectrometer	UV		UVIS		NIR		SWIR	
Band ID	1	2	3	4	5	6	7	8
Performance range* [nm]	270-	270–320		320–490		710–775		-2385
Spectral range [nm]	267–300	300–332	305–400	400–499	661–725	725–786	2300–2343	2343–2389
Spectral resolution [nm]	0.45	- 0.5	0.45-	-0.65	0.34-	-0.35	0.227	0.225
Slit width* [μ m]	560	560	280	280	280	280	308	308
Spectral dispersion [nm/pixel]	0.0)65	0.1	195	0.1	26	0.0)94
Spectral magnification*	0.327	0.319	0.231	0.231	0.263	0.263	0.025	0.021

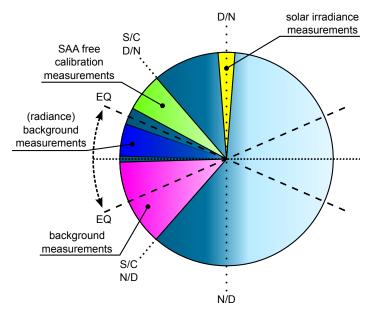
Table 1: Main spectral characteristics of the four TROPOMI spectrometers and the definition of the TROPOMI spectral bands with identifiers 1–8. Parameters marked with \star are design values. The other values are listed as calibrated pre-flight.

- 2. No measurements can be taken around spacecraft midnight, in order to facilitate data processing.
- 3. Background measurements that match the radiance measurements on the day side for in-flight calibration by the L01b Processor need to be taken in the full eclipse with closed folding mirror.
- 4. Calibration measurements should be performed as much as possible outside the South Atlantic Anomaly (SAA) area, in order to minimize interference of proton radiation.
- 5. Calibration measurements must have a regular, fixed repetition interval.

The constraints for the SAA and the spacecraft eclipse greatly reduce the parts of the night side of the orbit that are suitable for calibration measurements. The SAA is bound to a fixed area in terms of latitude and longitude, but due to seasonal variation, its position relative to spacecraft midnight changes over the seasons. This is illustrated in Figure 2, which shows the position of the SAA in the two most extreme situations, i.e. 21 June and 21 December. In Figure 2 the green parts show the part of the orbit that is never affected by the SAA.

Since for instrument operations, the orbits are defined without any seasonal dependency, only a small part of the orbit is guaranteed to be unaffected by the SAA throughout the seasons as shown in Figure 3. This part is too short for the calibration measurements, so depending on the season and the exact measurements they extent more or less into the SAA region. During in-flight commissioning it has been observed that thermal hotspots such as gas flares at the eclipse side of the orbit are detected by the SWIR spectrometer. Background measurements for the radiance measurements are therefore taken with a closed folding mirror in the full eclipse. They are then truly dark measurements for all spectrometers. The folding mirror is a life-limited item and cannot be employed every orbit. The background radiance measurements are therefore restricted to the northern part of the eclipse and to the calibration orbit types where the folding mirror is used. To maximize the total time of radiance background measurements they are performed in 26 of the 34 different calibration orbit types.

Figure 2: Seasonal variation of the SAA relative to the orbit. S/C = spacecraft, EQ = equator, SAA = South Atlantic Anomaly, D = day, N = night.


To accommodate regular, fixed repetition intervals for the calibration measurements, a scheme of 360 orbits is used. As 360 is divisible by many numbers, it is possible to accommodate many different repetition intervals. For sake of simplicity, the 360 orbits are divided in 24 blocks of 15 orbits, each block corresponding to approximately 25 hours, or roughly to a day. A 'week' is defined to be 6 of these 15-orbit blocks and a 'month' as 4 of these weeks. This allows for easy definition of calibration measurements that have (roughly) daily, weekly, biweekly or monthly repetition cycles.

4.3.1 Co-addition and small pixels

The signals detected by the spectrometers are digitized in the detector electronics modules (DEMs). The data is saved and co-added in the instrument specific modules (ISMs) in the instrument control unit (ICU). The number of those pixels to be co-added for each detector half (or band) is individually programmable between 0 and 512. It is possible to co-add up to 256 consecutive images. The two halves of one detector can use different co-addition factors.

Information concerning the individual signals of a pixel that contribute (i.e. add up to) to a co-addition is lost, with one exception. One configurable detector pixel, in every row, for both detector output chains, i.e., two columns per detector, is also stored separately for every exposure/co-addition of an image. The data for these 'small-pixel columns' are included in the science data and provide information on a higher spatial resolution than the data for other columns, which may be useful for certain studies.

Clearly, co-addition increases the signal to noise ratio. Pixels in the small pixel columns are excluded from this operation. These pixels provide the only way to get some information about changes in a temporal sense during the co-addition time.

Figure 3: Position of irradiance, calibration, radiance background and background measurements in the orbit. S/C = spacecraft, EQ = equator, SAA = South Atlantic Anomaly, D = day, N = night. The radiance background is not performed in every orbit containing calibration measurements.

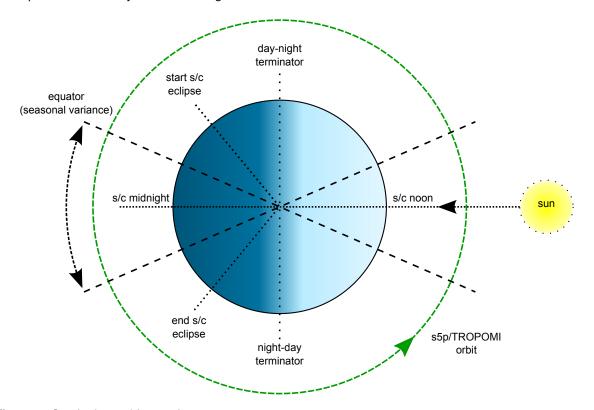


Figure 4: Sentinel-5p orbit overview

4.3.2 Earth radiance measurements

The Earth radiance measurements form the bulk of the measurements. Apart from the optical properties of the instrument, there is some flexibility in the electronics that determines the Earth radiance ground pixel size. The co-addition period determines the ground pixel size in the along-track direction. Row binning (which is possible for UVN-DEMs only) determines the ground pixel size across-track. The parameter space is limited however, as choosing a smaller ground pixel size will increase the data rate and will decrease the signal-to-noise ratio for the individual ground pixels. The data rate is limited by both internal interfaces within the instrument as well

as by the platform's on-board storage and down-link capabilities.

For the Earth radiance measurements the co-addition period can be set to either 1080 ms or 840 ms. This effectively results in a ground pixel size of approximately 7km or 5.5km along-track. The co-addition period is set in the instrument configuration, initially the nominal operations phase was started with 1080 ms.

For the SWIR-DEM, which contains a CMOS detector, row binning is not supported. This means that, effectively, the binning factor is 1 for the SWIR bands (Band 7 and Band 8), resulting in a ground pixel size across-track between 7km at the center and 34km at the edges of the across-track field of view. The ground pixel size varies across-track since the spatial dispersion (degrees/pixel) is constant, resulting in a ground pixel size that becomes larger towards the edges of the across-track field of view due to the Earth's curvature.

For the UVN-DEMs, binning factors are optimized to obtain a more constant ground pixel size across-track. For Bands 2, 3, 4, 5 and 6 a binning factor of 2 is used in the center and in a large region around it. At the edges of the across-track field the binning factor becomes 1. This results in a ground pixel size that varies between 3.5 km and 15 km where the latter value is reached for pixels just before the binning factor changes from 2 to 1. For Band 1 the binning factor is much higher in order to increase the signal-to-noise. In a region around the center, the binning factor is 16. On both sides an intermediate region with binning factor 8 exists, while the pixels near the edge have a binning factor of 4. This results in across-track ground pixel sizes of 28 km in the center and of 60 km near the '8-4' fault line.

Band	DEM	Binning factor	Across-track ground pixel size	
1	UV	416	28 60 km	
2	UV	12	3.5 15 km	
3	UVIS	12	3.5 15 km	
4	UVIS	12	3.5 15 km	
5	NIR	12	3.5 15 km	
6	NIR	12	3.5 15 km	
7	SWIR	n/a	7 34 km	
8	SWIR	n/a	7 34 km	

Table 2: Binning factors and across-track ground pixel sizes for Earth radiance measurements.

The binning factors specified in Table 2 only apply to the part of the detectors that contain the spectrometer signals. For the UVN detectors, the spectrometer output only illuminates a part of the rows of the detector. The remaining rows are used for in-orbit calibration purposes. These calibration rows are be read out with higher binning factors in order to improve the signal-to-noise ratio and to reduce the instrument's data rate.

Apart from the binning factor and the co-addition period, the remaining configuration parameters for the Earth radiance measurements, including exposure time and gains, have been optimized during in-flight commissioning for the best signal-to-noise ratio while minimizing saturation of the detector or electronics. This optimization was based on scenes with the highest radiance levels, typically clouded scenes. Since the highest radiance level changes as a function of latitude, a total of five different settings for different latitude zones are created. For bands 4 and 6 saturation it has not been possible to exclude saturation completely due to instrument limitations.

4.3.3 Solar irradiance measurements

The Sun is visible in TROPOMI's solar irradiance port every orbit for a period of approximately 3 minutes at the day-night transition in the northern hemisphere, as illustrated in Figure 3. Every 15 orbits - approximately once every calendar day - TROPOMI is commanded to perform a solar irradiance measurement with the nominal internal diffuser QVD1. As the main purpose of the solar irradiance measurement is to calculate top-of-atmosphere reflectance, the solar irradiance measurement follows the same binning scheme as the Earth radiance measurements. The remaining parameters have been optimized for the best signal-to-noise ratio. The signal-to-noise ratio is improved even further by averaging the solar irradiance measurements within the L01b Processor. The backup diffuser QVD2 is measured on a weekly basis, these measurements have the same binning scheme as the measurements via the nominal diffuser. They are used to monitor and eventually correct the degradation of QVD2. The daily and weekly irradiance measurements are performed around a fixed solar angle. The platform performs a yaw maneuver such that at the middle of the measurement the solar

angle matches the angle where the absolute calibration of the solar port was performed during the on-ground calibration. On a fortnightly basis unbinned measurements via the nominal diffuser are performed at the natural solar angle. They are used for calibration purposes.

4.3.4 Background measurements

The background signal for measurements is be calibrated in-orbit. Ideally, every measurement should have accompanying background measurements in the same orbit. These background measurements are performed using identical settings as the measurement they accompany. A different ICID for the background measurement ensures that on-ground it is being processed as a background measurement. The background measurements are performed on the eclipse side of the orbit as illustrated in Figure 3. Background measurements for radiance and calibration measurements are performed in the northern part of the eclipse with folding mirror closed. For the southern part of the eclipse and for certain orbit types, the folding mirror is never closed. There, background measurements with a dedicated identifier are performed with the folding mirror open.

4.3.5 Calibration measurements

Calibration measurements are performed on the night side of the orbit, mainly outside the SAA, as illustrated in Figure 3. The binning scheme that is used for a calibration measurement depends on the objective of that measurement. Calibration measurements that have a strong relation with Earth radiance measurements will use the same binning scheme as Earth radiance measurements. These typically are measurements that focus on optical properties or that focus on instrument performance degradation. Most calibration measurements however use a so-called unbinned scheme, that reads out all the pixels of the detector. For these measurements, the co-addition period can be slightly longer than for Earth radiance measurement, to avoid data rate bottlenecks within the instrument or the platform.

The other instrument configuration settings are typically optimized for the signal-to-noise ratio. For specific calibration purposes it is necessary to vary one or more parameters of the measurement. For example, to characterize the different gains of the instrument, a measurement series is performed where the gain is varied, but all other settings are fixed.

5 Input data products

The main inputs for the L01b are the L0 data products, as described in Table 3. Each of these L0 data products will contain L0 data of a different Application Process Identifier (APID), i.e. 1 APID per product, separate products for each of the APIDs. The L0 product format is specified in [AD2].

Input product	Description
L0ENG_A	L0 Engineering data (X-Band telemetry)
L0ODB_1L0ODB_8	L0 Instrument data for bands 1 through 8
L0SAT_A	L0 Ancillary data (containing S/C ephemeris and attitude)

Table 3: L0 input products

Another important input for the L01b is the Calibration Key Data. It is foreseen that the Calibration Key Data is provided as a set of data products that has a specified validity range (i.e. the set of orbits to which these Calibration Key Data can be applied and as described in metadata). The Calibration Key Data consists of three separate data products. First, there are two dynamic Calibration Key Data products, one for the UVN module (ICM_CKDUVN) and one for the SWIR module (ICM_CKDSIR) respectively. Finally there is the static / auxiliary Calibration Key Data product (AUX_L1_CKD).

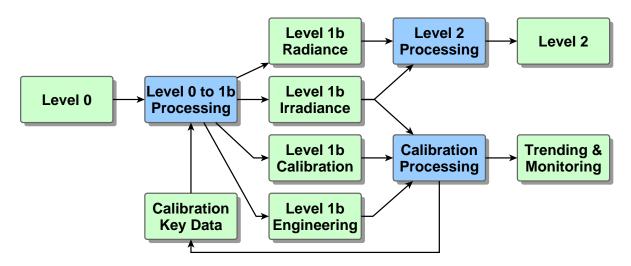
The main difference between the three different Calibration Key Data products is the intended update interval. The dynamic Calibration Key Data products may be updated at a high frequency, such as one time per day. These will then be generated by the in-flight calibration processors, which are run in the same data center as the L01b data processor. The static / auxiliary Calibration Key Data product is intended to be updated less frequently, for example once per month. This static / auxiliary Calibration Key Data product is created off-site. The actual frequency at which the Calibration Key Data will be updated depends on the performance of the instrument. The CKDS is described in [RD11]. An overview of all the auxiliary data products that are currently foreseen is provided in Table 4.

Input product	Description				
ICM_CKDUVN	Calibration Key Data Set containing dynamic CKD parameters generated by UVN in-flight calibration processor.				
ICM_CKDSIR	Calibration Key Data Set containing dynamic CKD parameters generated by SWIR in-flight calibration processor.				
AUX_L1_CKD	Calibration Key Data Set containing semi-static CKD parameters delivered by IDAF system. Generated when nescesarry				
IERSB	IERS Bulletin B, see [ER17]. The IERS Bulletin B files can be obtained using anonymous FTP from the IERS public FTP server ftp.iers.org in directory ftp://ftp.iers.org/products/eop/bulletinb/format_2009/. These products are generated once per month and are approximately 17kB in size. Starting from version 2.0.0, the L01b also supports the Bulletin B files in XML format.				
IERSC	IERS Bulletin C, see [ER17]. The IERS Bulletin B files can be obtained using anonymous FTP from the IERS public FTP server ftp.iers.org in directory ftp://ftp.iers.org/products/eop/bulletinc/. These products are generated approximately twice per year and are approximately 2kB in size. Starting from version 2.0.0, the L01b also supports the Bulletin C files in XML format.				

Table 4: L0 auxiliary input products

Finally, there are several static input files that determine the run-time configuration of the L01b. These will be delivered with the L01b and are considered part of the run-time environment of the L01b. These files are, for example, used to tailor the L01b for a specific processing mode. This means that for each of the different modes, there will / can be separate deliveries of the L01b. These deliveries could differ in terms of binaries or in term of these static input files or both.

6 TROPOMI L1b product overview


The Level-1b processor output consists of the following data products:

Level-1b radiance The Level-1b radiance products contain the Earth radiance measurements, including annotation data such as geolocation. For each data granule, typically of the size of one orbit, there is a data product for each of the eight bands. The radiance products are the main input for the Level-2 processors.

Level-1b irradiance The Level-1b irradiance products contain the averaged solar irradiance measurements, including annotation data. For each data granule, there is a data product for each of the two modules, UVN and SWIR. The Level-2 processors will use the irradiance products to calculate reflectance from the Earth radiance data. The irradiance data is used for calibration processing as well. Every 15 orbits - approximately once every calendar day - TROPOMI will be commanded to perform a solar irradiance measurement. If no or insufficient (e.g. due to downlink errors) solar measurements are available in the data granule being processed, no irradiance product will be generated.

Level-1b calibration The Level-1b calibration products contain the calibration and background measurements, including annotation data, as well as any calibration data that are derived from radiance and irradiance measurements. For each data granule, there is a data product for each of the two modules, UVN and SWIR. The calibration products are the main input for the calibration processors that will use these products for generating updates to the calibration key data and for generating trending and monitoring products.

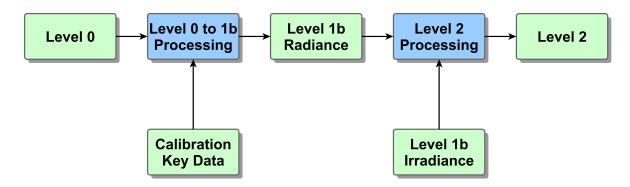

Level-1b engineering The Level-1b engineering products contain the instrument's engineering data converted to physical units. For each data granule, there is a single data product. The engineering products are input for the calibration processors who will use these products for generating updates to the calibration key data and for generating trending and monitoring products. The L1b engineering product is only intended for calibration and monitoring purposes. All instrument information needed or relevant for L2 processing will be contained within the radiance and irradiance products. The operational perspective of the L01b processing chain is depicted in Figure 5.

Figure 5: Operational perspective of the L01b processing chain, showing its data products and their position in the processing chain. The blue blocks denote processors; the green blocks denote data products.

The L01b Processor is operationally used in two different modes: **standard product processing** and **near-real-time (NRT) product processing**. The products from standard product processing have the highest quality but less stringent requirements for timeliness. This as opposed to the NRT products, which are required to be available within 2 hours 15 minutes after observation for L1b and 3 hours after observation for L2. To achieve this requirement, speed is favored over quality for the NRT products. The standard products can be distinguished from the NRT products by means of their product or file names and the metadata.

The operational perspective of the NRT processing chain differs from the standard L10b processing chain in that it not includes the generation of irradiance products nor that it involves calibration processing. This is show in Figure 6.

Figure 6: Operational perspective of the NRT processing chain. The blue blocks denote processors; the green blocks denote data products. The irradiance product shown is the result of the standard processing chain.

The data granule (defined as the data time span that is to be processed by the processor) is one orbit for standard product processing. For reasons of efficiency (i.e. data transmission), the volume of one data downlink will be sliced into smaller data volumes. These smaller data volumes form the base of the NRT products, leading approximately to 1 NRT product per data slice.

Table 5 presents an overview of the products: two radiance products will be made for each detector (one for each spectral band). Irradiance and calibration products are instrument module specific.

Instrument module			U	٧N			SV	VIR
Detector	UV		UVIS		NIR		SWIR	
Spectral band	1	2	3	4	5	6	7	8
Radiance product (standard) (# of products/orbit)	1	1	1	1	1	1	1	1
Radiance product (NRT) (# of products/orbit)	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20
Irradiance product (# of products/day)	1 (UVN)						1 (SWIR)	
Calibration product (# of products/orbit)	1 (UVN)					1 (SWIR)		
Engineering product (# of products/orbit)				1 (UVN	+ SWIR)			

Table 5: Overview of L1b products that are generated per day (irradiance product) and per orbit (all other products). The number of NRT products depends on the number of downlink slices and the data volume per slice. The numbers mentioned here are indicative.

7 TROPOMI L1b product description

7.1 L1b file structure

The "Earth Observation Ground Station File Format Standard (EO-FFS)" standard [AD04] is relevant to all data files exchanged between ground segment systems within the Earth Observation Missions and as such applicable for the TROPOMI L1b product. This standard provides guidance for data files structures and their encoding, naming and syntax. The EO-FFS standard is used in all recent and upcoming ESA Earth Observations missions, including Sentinel Missions 1, 2 and 3. For the Sentinel 5 Precursor ground segment a tailoring document [AD5] has been made available with a mission specific implementation of the EO-FFS standard.

Within this standard, Earth observation data files are defined as logical files composed of one header and one data block. The logical file can be structured as one physical file or as two physical files separate (i.e. a header file and data block file). The *physical header file* is defined as an XML file containing a fixed part and a variable part of header/metadata information. The header contains configuration control or organizational data. A physical header file has a file name extension ".HDR."

The *data block* can be either an ASCII/XML file or a binary file. In case of a binary file, a self-describing format is preferred. Binary data blocks are always stored as a separate file with file name extension ".DBL". For the TROPOMI L1b products the use of a binary data block is applicable containing one netCDF4 file (see section 7.2 for a discussion on netCDF4). In order to be in conformance with the CF-Metadata conventions [RD13], the tailoring permits to use the file name extension ".nc" for the physical filename instead.

For the TROPOMI L1b products this leads to the following convention with respect to the naming of the physical header and the data block files:

header file: logical_file_name.HDR
data block file: logical_file_name.nc

When these files are distributed the baseline for packaging is "zip", but other formats (i.e. "gzip", "tar" or "tar/gzip") are allowed. However, because of the considerable processing overhead introduced in compressing and decompressing L1b products, it is recommended to use either "zip" without compression or "tar" (uncompressed by definition). In case of packed files the file name extension is ".zip" or ".tar".

7.1.1 L1b logical file name convention

The files shall be named using a fixed set of elements, each of fixed size, separated by underscores "_". The file names are composed of a *Mission ID* (<MMM>), a *File Class* (<CCCC>), a *File Type* (<TTTTTTTTT>) and a *File Instance ID* (<instanceID>):

L1b logical file name: <MMM>_<CCCC>_<TTTTTTTTT>_<instance ID>

The next subsections show how the L1b logical file name will be based on the S5p tailoring defined in [AD5].

7.1.1.1 Mission ID and File Class

The Mission ID and File Class elements for S5p TROPOMI products are listed in Table 6.

Name	Value	Definition	
MMM S5P Mission identifier (fi		Mission identifier (fixed value: "S5P")	
CCCC	[TEST, OGCA, GSOV, OPER, NRTI, OFFL, RPRO]	The file class refers to the type of activity for which the file is used. TEST for internal testing OGCA for on-ground calibration GSOV for ground segment overall validation, system level testing OPER for operational processing NRTI for near-real time processing OFFL for offline processing RPRO for reprocessing	

Table 6: Mission identifier and file class specification

7.1.1.2 File Type

The File Type element identifies the product and consists of 10 characters, either uppercase letters, digits or underscores "_". For S5p, the File Type can be subdivided into two sub-elements of respectively 4 and 6 characters, as follows:

File Type: <TTTTTTTTT> = <FFFF><DDDDDD>

where:

File Category: <FFFF>

Product Semantic Descriptor: <DDDDDD>

File Category The File Category element consists of 4 characters (3 uppercase letters, digits or underscores "_" + 1 underscore "_").

For the S5p TROPOMI L1b products (science data products) the File Category FFFF = L1B

Product Semantic Descriptor The Product Semantic Descriptor must be unique for a given File Type and be as descriptive as possible. It consists of 6 characters, either uppercase letters, digits or underscores "_".

For S5p L1b data product files (radiance and irradiance data, calibration and engineering products) identified with the File Type element set to "L1B_", the Product Semantic Descriptor is defined as shown in Table 7.

Product Semantic Descriptor	Comment
RA_BD1	Radiance product band 1 (UV detector)
RA_BD2	Radiance product band 2 (UV detector)
RA_BD3	Radiance product band 3 (UVIS detector)
RA_BD4	Radiance product band 4 (UVIS detector)
RA_BD5	Radiance product band 5 (NIR detector)
RA_BD6	Radiance product band 6 (NIR detector)
RA_BD7	Radiance product band 7 (SWIR detector)
RA_BD8	Radiance product band 8 (SWIR detector)
IR_UVN	Irradiance product UVN module
IR_SIR	Irradiance product SWIR module
CA_UVN	Calibration product UVN module
CA_SIR	Calibration product SWIR module
ENG_DB	Engineering product

Table 7: Product Semantic Descriptor for L1b products. See Table 1 for a definition of the bands, modules and detectors.

7.1.1.3 File Instance ID

For science data products (with the File Type "L1B_"), the File Instance ID consists of 63 characters, either uppercase letters, digits or underscores ", with the following shape:

File Instance ID: <yyyymmddThhmmss>_<YYYYMMDDTHHMMSS>_<00000>_<cc>_<ppppppp>_<YYYYMMDDTHHMMSS>

where:

product validity start time: <yyyymmddThhmmss>

product validity stop time: <YYYYMMDDTHHMMSS>

absolute orbit number: <00000>

collection number: <cc>

processor version number: <pppppp>

production (start) time: <YYYYMMDDTHHMMSS>

Notes:

- For standard products the product validity start time is set to spacecraft midnight, which is the start time of the orbit. The product validity stop time is set to the end time of that orbit. For near real-time (NRT) products the validity start and stop times are equal to the start and stop time of the data slice.
- The absolute orbit number starts at 00001 (first ascending node crossing after spacecraft separation).
- The collection number stands for a collection of parameters defining the current product (processor version, auxiliary data, and configuration settings) to ease the interpretation of data products by the end users. The collection number starts at 01.
- The processor version number consists of 6 digits, with the first 2 digits for major updates, the next 2 digits for minor updates and the last 2 digits for new releases, i.e. 010203 for processor version 1.2.3.

7.1.1.4 L1b file name examples

Hereafter (Table 8 and Table 9) some file name examples are provided of the logical file name of the different L1b products. The <instance ID> is not provided for readability.

Radiance products	Irradiance products
(standard and near real time)	
S5P_0PER_L1B_RA_BD1_ <instance id=""></instance>	S5P_OPER_L1B_IR_UVN_ <instance id=""></instance>
S5P_NRTI_L1B_RA_BD1_ <instance id=""></instance>	S5P_OPER_LIB_IR_SIR_ <instance id=""></instance>

Table 8: Logical file name examples for radiance and irradiance products

Calibration products	Engineering product
S5P_OPER_L1B_CA_UVN_ <instance id=""></instance>	S5P_OPER_L1B_ENG_DB_ <instance id=""></instance>
S5P_OPER_L1B_CA_SIR_ <instance id=""></instance>	

Table 9: Logical file name examples for calibration products and engineering products

Here is a full example of the physical file name for an L1b radiance product in netCDF format, containing the radiance measurements of Band 1 (of the UVN module):

 $\tt S5P_OPER_L1B_RA_BD1_20151114T112005_20151114T125934_00140_02_010203_20151204T093045.nc$

7.1.2 L1b header file

The header presents the initial part of a logical file, containing descriptive or configuration control information. The header file (XML) distinguishes a Fixed Header and a Variable Header part. Mandatory elements of the Fixed Header part are defined in EO-FFS and are listed in [RD9].

The Variable Header is specific for each File Type. The EO-FFS suggests some desirable elements that may be included in the variable part, such as a description of the data block type (for L1b: binary), the name of input files used, if any, to generate the file and a reference to a formal document describing the format and contents of the data block. The information on input data sets and the documentation on format and contents of the data is available in the LI_Lineage metadata element of the DQ_DataQuality core element (see: [RD9]) of the ISO 19115-2 metadata specification. The approach is to copy the ISO 19139 XML representation of the LI Lineage element into the Variable Header.

The approach for the TROPOMI L1b products is to include all the required metadata information into the product allowing the automated extraction by dedicated tools of XML formatted metadata records that are fully conformant to the INSPIRE standard [RD14], the OGC standard [RD15], which is adopted by ESA and the ESA standard [AD6]. This means that the metadata are integrated into the product independent of a metadata implementation and that tools are required to produce the standardized metadata representations. The implementation specification, including the header information is provided in section 8.2.

7.2 L1b product data structure

For the TROPOMI L1b products the netCDF-4 enhanced model has been selected as the preferred file format. NetCDF (Network Common Data Form)] [ER18] has been developed by the Unidata Program Center at the University Corporation for Atmospheric Research (UCAR) [ER19] and it is used by many scientists and application developers active in the domains of climatology, meteorology and oceanography. The netCDF-4 format is open standard and has been adopted by the Open Geospatial Consortium (OGC).

NetCDF is a data model for array-oriented scientific data. A freely distributed collection of access libraries implementing support for that data model, and a machine-independent format are available. Together, the interfaces, libraries, and format support the creation, access, and sharing of multi dimensional scientific data. NetCDF is self-documenting, which means it can internally store information used to describe the data. For example, the internal documentation can associate various physical quantities (such as temperature, pressure, and humidity) with spatio-temporal locations (such as points at specific latitudes, longitudes, vertical levels, and times). Three different netCDF formats are supported:

- · netCDF classic model format
- · netCDF 64-bit offset format
- netCDF enhanced data model format (netCDF-4/HDF5 format)

For all netCDF versions (versions 3.x and 4.x) the classic model is the default format. Compared to the classic model, the enhanced model (starting from version 4) offers some important new features such as support for *groups*, (user-defined) *vlen* (variable length) and *compound types* (structures) and *parallel I/O access*.

Although files written using the classic model have the advantage that they may be read by many applications, the use of the enhanced model, supporting groups and structures in particular, offers significant advantages. By the time TROPOMI has been launched, it is expected that many software products will be upgraded in time to support the features of the enhanced data model. Moreover, processing the L1b products to L2 will require dedicated software to be developed using software libraries that are currently available in several languages and already support these features. In view of the above, the enhanced model is used for all L1b products.

In order to support increased interoperability the L1b products shall also comply with the Climate and Forecast (CF) metadata conventions [RD13]. The CF-conventions provide a definitive description of what the data values found in each netCDF variable represent, and of the spatial and temporal properties of the data, including information about grids, such as grid cell bounds and cell averaging methods. This enables users of files from different sources to decide which variables are comparable, and is a basis for building software applications with powerful data extraction, grid remapping, data analysis, and data visualization capabilities.

For data discovery, the metadata of the L1b products shall follow some of the recommendations of the Attribute Convention for Dataset Discovery (ACDD) [ER20]. This convention describes the recommended netCDF attributes for describing a netCDF dataset for use by discovery systems. Tools, such as provided by THREDDS [ER21], will use these attributes for extracting metadata from datasets, and exporting to Dublin

Core, DIF, ADN, FGDC, ISO 19115 etc. metadata formats. In particular, this allows for the export of geospatial metadata in XML according to the ISO 19139 specification, which provides the XML implementation schema for ISO 19115. In the "Metadata specification for the TROPOMI L1b products" [RD9] a comprehensive description of these metadata models and how they are applied to the L1b products are given. Section 8 describes how the metadata is stored in the netCDF file, allowing extraction and exporting to different metadata formats.

NOTE: The L01b products can be read by NetCDF version 4.3.1.1 or higher. It also possible to read the L01b product with HDF5 version 1.8.15-patch1 or higher.

7.2.1 NetCDF File Structure

The file format of the L1b products is structured using groups compliant with the netCDF-4 enhanced model. The group hierarchy is as follows ("/" indicating the root of the groups):

```
/
/global attributes
/MetadataGroup [1]
/MetadataGroup/ISOMetadataGroup [1]
/MetadataGroup/EOPMetadataGroup [1]
/MetadataGroup/ESAMetadataGroup [1]
/ProductGroup [1,*]
/ProductGroup/SensorModeGroup [1,*]
/ProductGroup/SensorModeGroup/ObservationsGroup [1]
/ProductGroup/SensorModeGroup/GeodataGroup [1]
/ProductGroup/SensorModeGroup/InstrumentGroup [1]
/ProcessorGroup [1]
```

In the above schema, for each group is indicated how many occurrences of the particular group are expected/allowed in the parent group ([1,*] meaning 1 or more).

This grouping has several benefits:

- Different metadata groups allow for extraction of metadata into XML documents conforming the different metadata specifications.
- ProductGroups allow the combination of observations made by different sensors into one netCDF file (i.e. Band_1 Radiance, Band_2 Radiance, ...)
- SensorModeGroups allow the combination of observations made by the same sensor operating in different modes (i.e. standard mode, zoom mode, ...)
- The various subgroups of the SensorModeGroup allow grouping of measurement data, location data, instrument data, processor data and other, simplifying the access to the relevant information depending on the intended use.
- Comprehensive information about configuration items (typically, algorithm and processor parameters)
 used in processing the data are stored in a separate ProcessorGroup. This information is not documented
 in detail here, as it is intended to be used only by experts of the L1b processing team.

7.2.2 Naming conventions

7.2.2.1 Groups

Group names are in upper case and consist of alphanumeric characters and underscores. Spaces are not allowed. The group names for the different groups are defined as follows:

MetadataGroup For all products fixed to: METADATA

ISOMetadataGroup For all products fixed to: ISO_METADATA

EOPMetadataGroup For all products fixed to: EOP_METADATA

ESAMetadataGroup For all products fixed to: ESA_METADATA

ProductGroup For radiance products one of the following:

```
BAND1_RADIANCE | BAND2_RADIANCE | BAND3_RADIANCE | BAND4_RADIANCE |
BAND5_RADIANCE | BAND6_RADIANCE | BAND7_RADIANCE | BAND8_RADIANCE
For irradiance products one or more of the following:
```

```
BAND1_IRRADIANCE | BAND2_IRRADIANCE | BAND3_IRRADIANCE | BAND4_IRRADIANCE | BAND5_IRRADIANCE | BAND6_IRRADIANCE | BAND7_IRRADIANCE | BAND8_IRRADIANCE
```

SensorModeGroup For all products one of the following:

```
STANDARD_MODE | SPECIAL_MODE_%J
```

where: %J equals to the Instrument Configuration ID modulo 4096 (IcID % 4096); more information on the meaning of the IcID is found in sections 8.40 and 8.41)

There is one STANDARD_MODE group. This means that all measurements taken in the standard mode operation are combined even if the standard operation mode is interleaved with operations of the sensor in a special mode.

ObservationsGroup For all products fixed to: OBSERVATIONS

GeodataGroup For all products fixed to: GEODATA

InstrumentGroup For all products fixed to: INSTRUMENT

ProcessorGroup For all products fixed to: PROCESSOR

7.2.2.2 Variables, attributes and dimensions

All variables and dimensions are written in lower case and consist of alphanumeric characters and underscores. Spaces are not allowed.

Unless specified by CF Conventions or ACDD conventions, attributes are written in lower case and consist of alphanumeric characters and underscores. Spaces are not allowed.

7.2.3 Dimensions and coordinate variables

The spectral radiance measurements are collected as a function of the two dimensions (ground pixels across track and wavelengths) of the detector and of the scans. The corresponding dimensions describing the swath in the netCDF product are named: ground_pixel, spectral_channel and scanline, respectively. For reasons of interoperability the dimension time was added with a fixed size of unity as well as a one-element coordinate variable time(time) indicating the reference time of the measurements. This reference time is yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start. The delta_time(scanline) variable indicates the time difference with the reference time time(time). Thus combining the information of time(time) and delta_time(scanline) yields the measurement time for each scanline as UTC time.

Following the recommendations of the CF Conventions with respect to the ordering of dimensions having the interpretations of "date or time" (T), "height or depth" (Z), "latitude" (Y) or "longitude" (X), a logical ordering of the dimensions would be (time, spectral_channel, scanline, ground_pixel). However, performance tests have shown that given the preferred way of reading through the data, a relative order of (time, scanline, ground_pixel, spectral_channel) is preferable; this latter dimension ordering is therefore selected for the variables.

In case of a swath-type scanning pattern as used by TROPOMI, the scanline and ground_pixel dimensions cannot be referred to as latitude and longitude because they are on a different grid. However, latitude and longitude information can be stored in auxiliary coordinate variables (here: latitude(time, scanline, ground_pixel)), which are identified by the coordinates attribute. By using this convention, applications will be able to process the latitude and longitudes correctly, allowing, for instance, plotting swath-like measurements on a latitude, longitude grid.

One more dimension is defined in the radiance products: ncorner. The dimension ncorner has a fixed size of 4 and is used for specifying the corner coordinates of the individual ground pixels. The corner coordinates are specified by the latitude_bounds(time, scanline, ground_pixel, ncorner) and longitude_bounds(time, scanline, ground_pixel, ncorner) variables, which represent the boundaries of each pixel.

Because during the irradiance measurements the sensors are not imaging the Earth's surface but are measuring the solar irradiance, pixel is the preferred name for the across-track dimension. Moreover, after correction for the sun elevation the individual irradiance measurements as function of scanline are averaged, which results in just one measurement.

Table 10 lists the typical size of the dimensions for different detectors and bands. The reported number of scanlines are applicable to orbits without solar irradiance measurements and for the instrument mode with a 7 km along-track ground pixel size. For orbits with a solar irradiance measurement, the number of scanlines for radiance is reduced to approximately 2906. For the orbits with the instrument mode with a 5.5 km along-track ground pixel size, the number of scanlines for radiance is increased with approximately 29%.

Detector	ι	IV	U	/IS	N	IR	SV	VIR
Band	1	2	3	4	5	6	7	8
time	1	1	1	1	1	1	1	1
spectral_channel	497	497	497	497	497	497	480	480
scanline	3246	3246	3246	3246	3246	3246	3246	3246
<pre>ground_pixel (pixel)</pre>	77	448	450	450	448	448	215	215

Table 10: Typical NetCDF dimension sizes; The scanline dimension varies between orbits and products. A typical value for this size for a radiance product making observations at the day-side of the Earth is 3246. For irradiance products scanline=1. The ground_pixel dimension is only present in radiance products.

7.3 L1b products

7.3.1 Radiance products

The following tables (Table 11 to Table 13) list all variables of the radiance products as they appear in the different groups. There is no difference between standard and near-real time products. A detailed description in CDL is provided in sections 8.4 to 8.134. The netCDF base types are defined in Table 50.

ObservationsGroup			
Variable	Туре	Description	
time	int	Reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start.	
spectral_channel	int	Coordinate variable defining the indices in the spectral di- mension	
scanline	int	Coordinate variable defining the indices along track	
<pre>ground_pixel</pre>	int	Coordinate variable defining the indices across track	
delta_time	int	Time difference with time for each measurement	
radiance	float	Measured spectral radiance for each spectral pixel	
radiance_error	byte	Estimate of the systematic error (accuracy) of the measured spectral radiance (includes calibration and model errors).	
radiance_noise	byte	Estimate of the statistical error (precision) of the measured spectral radiance (includes shot noise and read noise).	
small_pixel_radiance	float(*)	Measured spectral radiance for the spectral channel dedi- cated for the small pixel measurements	
quality_level	ubyte	Overall quality assessment information for each (spectral) pixel	
spectral_channel_quality	ubyte	Quality assessment information for each (spectral) pixel	
<pre>detector_row qualification</pre>	ushort	Qualification flag indicating the detector row type or state	
<pre>detector_column qualification</pre>	ushort	Qualification flag indicating column type or state	
measurement_quality	ushort	Overall quality information for a measurement	
ground_pixel_quality	ubyte	Quality assessment information for each ground pixel	

Table 11: NetCDF variables in the ObservationGroup for radiance products

GeodataGroup		
Variable	Туре	Description
earth_sun_distance	float	Distance between the Earth and Sun
latitude	float	Latitude of the center of each ground pixel on the WGS84 reference ellipsoid
latitude_bounds	float	The four latitude boundaries of each ground pixel.
longitude	float	Longitude of the center of each ground pixel on the WGS84 reference ellipsoid
longitude_bounds	float	The four longitude boundaries of each ground pixel.
satellite_orbit_phase	float	Relative offset (0.0 1.0) of the measurement in the orbit
satellite_altitude	float	The altitude of the spacecraft relative to the WGS84 reference ellipsoid
satellite_latitude	float	Latitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
satellite_longitude	float	Longitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
viewing_azimuth_angle	float	Azimuth angle of the spacecraft measured from the ground pixel WGS84 reference ellipsoid.
viewing_zenith_angle	float	Zenith angle of the spacecraft measured from the ground pixel location on the WGS84 reference ellipsoid.
solar_azimuth_angle	float	Azimuth angle of the sun measured from the ground pixel location on the WGS84 ellipsoid.
solar_zenith_angle	float	Zenith angle of the sun measured from the ground pixel location on the WGS84 reference ellipsoid.
satellite_shadow fraction	float	Shadow fraction from S/C midnight-noon [0,4], umbral shadow [0,1], penumbral shadow [1,2], no shadow shadow-side [2,3], no shadow sun-side [3,4]

Table 12: NetCDF variables in the GeodataGroup for radiance products. [Note: Because of the nature of the information the variables latitude, longitude, latitude_bounds and longitude_bounds are placed in the GeodataGroup. However, current software applications might have problems to find the auxiliary coordinate variables (in this case latitude and longitude) listed by the coordinates attribute of a variable in the ObservationsGroup.]

InstrumentGroup		
Variable	Туре	Description
processing_class	short	High level identification of the type of measurement, for example earth / radiance, sun / irradiance, WLS calibration, LED calibration, dark current / background, etc.
instrument_configuration	compound	Identifier (number) that identifies the (detailed) type of measurement and the configuration of the instrument
instrument_settings	compound	All fields that determine the instrument configuration and are relevant for data processing, like exposure tme, binning factors, co-addition period, gain settings, status of calibration unit, etc.
housekeeping_data	compound	Fields that describe scanline dependent instrument characteristics, like detector temperatures, etc.
binning_table	compound	Contains the binning configuration for all of the instrument configurations used in the group. Not present in SWIR products
nominal_wavelength	float	The nominal spectral wavelength for each cross track pixel as a function of the spectral channel.

InstrumentGroup (cont'd)			
Variable	Туре	Description	
nominal_wavelength_error	float	The nominal spectral wavelength standard deviation for each cross track pixel as a function of the spectral channel.	
sample_cycle	int	Index of cycle. During one sample cycle an integer number of scanlines is collected	
sample_cycle_length	int	Length of sample_cycle	
<pre>measurement_to_detector row_table</pre>	compound	Conversion table from measurement row to begin and end row on detector	

Table 13: NetCDF variables in the InstrumentGroup for radiance products

7.3.2 Irradiance products

The following tables (Table 14 to Table16) list all variables of the irradiance products. A detailed description in CDL is provided in sections 8.4 to 8.134. The netCDF base types are defined in Table 50.

ObservationsGroup				
Variable	Туре	Description		
time	int	Reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start.		
spectral_channel	int	Coordinate variable defining the indices in the spectral dimension		
scanline	int	Coordinate variable defining the indices along track		
pixel	int	Coordinate variable defining the indices across track		
delta_time	int	Time difference with time for each measurement		
irradiance	float	Measured spectral irradiance for each spectral pixel		
irradiance_error	byte	Estimate of the systematic error (accuracy) of the measured spectral radiance (includes calibration and model errors).		
irradiance_noise	byte	Estimate of the statistical error (precision) of the measured spectral irradiance (includes shot noise and read noise)		
quality_level	ubyte	Overall quality assessment information for each (spectral) pixel		
spectral_channel_quality	ubyte	Quality assessment information for each (spectral) pixel		
<pre>detector_row qualification</pre>	ushort	Qualification flag indicating the detector row type or state		
<pre>detector_column qualification</pre>	ushort	Qualification flag indicating column type or state		
measurement_quality	ushort	Overall quality information for a measurement		

Table 14: NetCDF variables in the ObservationGroup for irradiance products

GeodataGroup		
Variable	Type	Description
earth_sun_distance	float	Distance between the Earth and Sun

 Table 15:
 NetCDF variables in the GeodataGroup for irradiance products

InstrumentGroup		
Variable	Туре	Description
calibrated_wavelength	float	Calibrated wavelength of each spectral pixel
calibrated_wavelength	float	Calibrated wavelength error of each spectral pixel
error		
processing_class	short	High level identification of the type of measurement, for example earth / radiance, sun / irradiance, WLS calibration, LED calibration, dark current / background, etc.
instrument_configuration	compound	Identifier (number) that identifies the (detailed) type of measurement and the configuration of the instrument
instrument_settings	compound	All fields that determine the instrument configuration and are relevant for data processing, like exposure tme, binning factors, co-addition period, gain settings, status of calibration unit, etc.
housekeeping_data	compound	Fields that describe scanline dependent instrument characteristics, like detector temperatures, etc.
binning_table	compound	Contains the binning configuration for all of the instrument configurations used in the group. Not present in SWIR products
nominal_wavelength	float	The nominal spectral wavelength for each cross track pixel as a function of the spectral channel.
nominal_wavelength_error	float	The nominal spectral wavelength standard deviation for each cross track pixel as a function of the spectral channel.
sample_cycle	int	Index of cycle. During one sample cycle an integer number of scanlines is collected
sample_cycle_length	int	Length of sample_cycle
measurement_to_detector row_table	compound	Conversion table from measurement row to begin and end row on detector

Table 16: NetCDF variables in the InstrumentGroup for irradiance products

7.3.3 Calibration products

7.3.3.1 NetCDF File Structure

The calibration product has a different NetCDF file structure than the file structure for radiance and irradiance products described in section 7.2.1. The file format of the L1b engineering product is structured using groups compliant with the netCDF-4 enhanced model. The group hierarchy is as follows ("/" indicating the root of the groups):

```
/
/global attributes
/MetadataGroup [1]
/MetadataGroup/ISOMetadataGroup [1]
/MetadataGroup/EOPMetadataGroup [1]
/MetadataGroup/ESAMetadataGroup [1]
/ProductGroup [1,*]
/ProductGroup/SensorModeGroup [1,*]
/ProductGroup/SensorModeGroup/ObservationsGroup [1]
/ProductGroup/SensorModeGroup/GeodataGroup [1]
/ProductGroup/SensorModeGroup/InstrumentGroup [1]
/ProductGroup/SensorModeGroup/QualityAssessmentGroup [1]
/ProcessorGroup [1]
```

7.3.3.2 Naming conventions

All naming conventions for the groups described in section 7.2.2 apply, except for the groups specified hereafter.

ProductGroup For calibration products one of the following:

```
BAND1_RADIANCE | BAND2_RADIANCE | BAND3_RADIANCE | BAND4_RADIANCE |
BAND5_RADIANCE | BAND6_RADIANCE | BAND7_RADIANCE | BAND8_RADIANCE |
BAND1_IRRADIANCE | BAND2_IRRADIANCE | BAND3_IRRADIANCE | BAND4_IRRADIANCE |
BAND5_IRRADIANCE | BAND6_IRRADIANCE | BAND7_IRRADIANCE | BAND8_IRRADIANCE |
BAND1_CALIBRATION | BAND2_CALIBRATION | BAND3_CALIBRATION | BAND4_CALIBRATION |
BAND5_CALIBRATION | BAND6_CALIBRATION | BAND7_CALIBRATION | BAND8_CALIBRATION
```

SensorModeGroup For all products the SensorModeGroup name has the format:

%C_MODE_%J

where: %C is the Processing Class Name (in upper case) (see section B);

and %J equals to the Instrument Configuration ID modulo 4096 (IcID % 4096); more information on the meaning of the IcID is found in sections 8.40 and 8.41).

Example: the band 1 calibration product for the white light source measurements is found in the group: /BAND1_CALIBRATION/WLS_MODE_1806/OBSERVATIONS.

QualityAssessmentGroup For all products fixed to: QUALITY_ASSESSMENT

7.3.3.3 Radiance calibration groups

ObservationsGroup			
Variable	Туре	Description	
time	int	Reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start.	
delta_time	int	Time difference with time for each measurement	
<pre>detector_row qualification</pre>	ushort	Qualification flag indicating the detector row type or state	
<pre>detector_column qualification</pre>	ushort	Qualification flag indicating column type or state	
measurement_quality	ushort	Overall quality information for a measurement	
<pre>ground_pixel_quality</pre>	ubyte	Quality assessment information for each ground pixel	
radiance_avg	float	Averaged measured spectral radiance for each spectral pixel of all measurements in the group	
radiance_avg_error	float	Average radiance signal error for each spectral pixel of all measurements in the group	
radiance_avg_noise	float	Average radiance signal noise for each spectral pixel of all measurements in the group	
<pre>radiance_avg_spectral channel_quality</pre>	ubyte	Quality assessment information about a (spectral) pixel in all measurements.	
<pre>radiance_avg_quality level</pre>	ubyte	Overall calculated quality assessment information for each (spectral) pixel in the averaged data	
radiance_avg_std	float	Average radiance signal standard deviation for each spectral pixel of all measurements in the group	
radiance_avg_row	float	Averaged measured spectral radiance value of a single row in a measurement	
radiance_avg_col	float	Averaged measured spectral radiance value of a single col- umn in a measurement	

ObservationsGroup (cont'd)			
Variable	Туре	Description	
radiance_avg_data	float	Averaged measured spectral radiance value of a single measurements	
small_pixel_radiance	float(*)	Measured spectral radiance for the spectral channel dedicated for the small pixel measurements	
scanline	int	Coordinate variable defining the indices along track	
ground_pixel	int	Coordinate variable defining the indices across track	
spectral_channel	int	Coordinate variable defining the indices in the spectral dimension	

 Table 17: NetCDF variables in the ObservationGroup for radiance calibration products

GeodataGroup				
Variable	Туре	Description		
satellite_orbit_phase	float	Relative offset (0.0 1.0) of the measurement in the orbit		
satellite_altitude	float	The altitude of the spacecraft relative to the WGS84 reference ellipsoid		
satellite_latitude	float	Latitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid		
satellite_longitude	float	Longitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid		
solar_azimuth_angle	float	Azimuth angle of the sun measured from the ground pixel location on the WGS84 ellipsoid.		
solar_zenith_angle	float	Zenith angle of the sun measured from the ground pixel location on the WGS84 reference ellipsoid.		
earth_sun_distance	float	Distance between the Earth and Sun		
latitude	float	Latitude of the center of each ground pixel on the WGS84 reference ellipsoid		
longitude	float	Longitude of the center of each ground pixel on the WGS84 reference ellipsoid		
latitude_bounds	float	The four latitude boundaries of each ground pixel.		
longitude_bounds	float	The four longitude boundaries of each ground pixel.		
viewing_azimuth_angle	float	Azimuth angle of the spacecraft measured from the ground pixel WGS84 reference ellipsoid.		
viewing_zenith_angle	float	Zenith angle of the spacecraft measured from the ground pixel location on the WGS84 reference ellipsoid.		
satellite_shadow fraction	float	Shadow fraction from S/C midnight-noon [0,4], umbral shadow [0,1], penumbral shadow [1,2], no shadow shadow-side [2,3], no shadow sun-side [3,4]		

 Table 18: NetCDF variables in the GeodataGroup for radiance calibration products

InstrumentGroup				
Variable	Туре	Description		
processing_class	short	High level identification of the type of measurement, for example earth / radiance, sun / irradiance, WLS calibration, LED calibration, dark current / background, etc.		
instrument_configuration	compound	Identifier (number) that identifies the (detailed) type of measurement and the configuration of the instrument		

InstrumentGroup (cont'd)		
Variable	Туре	Description
instrument_settings	compound	All fields that determine the instrument configuration and are relevant for data processing, like exposure tme, binning factors, co-addition period, gain settings, status of calibration unit, etc.
housekeeping_data	compound	Fields that describe scanline dependent instrument characteristics, like detector temperatures, etc.
nominal_wavelength	float	The nominal spectral wavelength for each cross track pixel as a function of the spectral channel.
nominal_wavelength_error	float	The nominal spectral wavelength standard deviation for each cross track pixel as a function of the spectral channel.
binning_table	compound	Contains the binning configuration for all of the instrument configurations used in the group. Not present in SWIR products
<pre>measurement_to_detector row_table</pre>	compound	Conversion table from measurement row to begin and end row on detector
sample_cycle	int	Index of cycle. During one sample cycle an integer number of scanlines is collected
sample_cycle_length	int	Length of sample_cycle

Table 19: NetCDF variables in the InstrumentGroup for radiance calibration products

QualityAssessmentGroup		
Variable	Туре	Description
detector_pixel_filling histogram	int	Histogram of the detector pixel filling in electrons for each scanline
offset_static_ckd	compound	Detector and electronics offset value, obtained from the calibration key-data
offset_prepostscan pixels	compound	Detector and electronics offset value calculated from the detector's pre- and postscan pixels
offset_readout_register	compound	Detector and electronics offset value calculated from the detector's read-out register
offset_overscan_rows	compound	Detector and electronics offset value calculated from the detector's overscan rows
offset_overscan_columns	compound	Detector and electronics offset value calculated from the detector's overscan columns
monitor_smear_observed	float	Observed detector smear values from the masked regions of the detector, for monitoring purposes
monitor_smear_calculated	float	Calculated detector smear values as used for the detector smear correction, for monitoring purposes
monitor_straylight observed	float	Observed stray light from the stray light areas on the detector for monitoring purposes
<pre>monitor_straylight calculated</pre>	float	Calculated stray light, for monitoring purposes
monitor_overscan_rows	float	Signal from the detector's overscan rows, for monitoring purposes
<pre>monitor_read_out register</pre>	float	Spectral channel signal values as read from the read ou register

Variable	Туре	Description
monitor_gain_alignment factor	float	Gain alignment factor for the measurement calculated in the GainAlignmentCalculationUVN algorithm. Applied gain alignment factor depends on the settings of this algorithm. Default, the CKD setting of the gain alignment correction factor is used, not the calculated.
monitor_radiance_signal	float	Average radiance of a small wavelength band around the specified wavelength, for monitoring purposes.
monitor_radiance_fit	float	Wavelength shift for a small wavelength band around the specified wavelength, for monitoring purposes
<pre>percentage_spectral channels_missing</pre>	float	Percentage of spectral channels for which the missing flag is set
<pre>percentage_spectral channels_defective</pre>	float	Percentage of spectral channels for which the defective flag is set
<pre>percentage_spectral channels_processing error</pre>	float	Percentage of spectral channels for which the processing error flag is set
<pre>percentage_spectral channels_saturated</pre>	float	Percentage of spectral channels for which the saturated flag is set
<pre>percentage_spectral channels_transient</pre>	float	Percentage of spectral channels for which the transient flag is set
<pre>percentage_spectral channels_rts</pre>	float	Percentage of spectral channels for which the RTS flag is set
<pre>percentage_spectral channels_underflow</pre>	float	Percentage of spectral channels for which the underflow flag is set
<pre>percentage_spectral channels_per_scanline missing</pre>	float	Percentage of spectral channels per scanline for which the missing flag is set
<pre>percentage_spectral channels_per_scanline defective</pre>	float	Percentage of spectral channels per scanline for which the defective flag is set
<pre>percentage_spectral channels_per_scanline processing_error</pre>	float	Percentage of spectral channels per scanline for which the processing error flag is set
percentage_spectral channels_per_scanline saturated	float	Percentage of spectral channels per scanline for which the saturated flag is set
<pre>percentage_spectral channels_per_scanline transient</pre>	float	Percentage of spectral channels per scanline for which the transient flag is set
<pre>percentage_spectral channels_per_scanline rts</pre>	float	Percentage of spectral channels per scanline for which the RTS flag is set
<pre>percentage_spectral channels_per_scanline underflow</pre>	float	Percentage of spectral channels per scanline for which the underflow flag is set
<pre>percentage_scanlines with_processing_steps skipped</pre>	float	Percentage of scanlines for which one or more processing steps were skipped
<pre>percentage_scanlines_in south_atlantic_anomaly</pre>	float	Percentage of scanlines in the South Atlantic Anomaly (SAA)

QualityAssessmentGroup (con	QualityAssessmentGroup (cont'd)		
Variable	Туре	Description	
percentage_scanlines_in spacecraft_manoeuvre	float	Percentage of scanlines affected by spacecraft manoeuvres	
<pre>percentage_scanlines with_solar_angles_out of_nominal_range</pre>	float	Percentage of scanlines for which the solar angles are outside the nominal range	
<pre>percentage_scanlines with_thermal_instability</pre>	float	Percentage of scanlines for which the instrument tempera- ture is out of its nominal range	
<pre>percentage_ground pixels_descending_side orbit</pre>	float	Percentage of ground pixels on the descending side of the orbit	
<pre>percentage_ground pixels_geolocation_error</pre>	float	Percentage of ground pixels with geolocation error	
<pre>percentage_ground pixels_geometric boundary_crossing</pre>	float	Percentage of ground pixels that cross a geometric boundary, e.g. dateline crossing	
<pre>percentage_ground pixels_night</pre>	float	Percentage of ground pixels for which the night flag is set	
<pre>percentage_ground pixels_solar_eclipse</pre>	float	Percentage of ground pixels for which the solar eclipse flag is set	
<pre>percentage_ground pixels_sun_glint</pre>	float	Percentage of ground pixels for which the sun glint flag is set	
<pre>oob_sl_nir_corr_row_avg blu_rad</pre>	float	Calculated oob straylight nir correction row average, blue side radiance, for monitoring purposes	
oob_sl_nir_dp_factor blu_rad	float	Calculated oob straylight nir dp factor, blue side radiance, for monitoring purposes	
<pre>oob_sl_nir_corr_row_avg red_rad</pre>	float	Calculated oob straylight nir correction row average, red side radiance, for monitoring purposes	
<pre>oob_sl_nir_dp_factor red_rad</pre>	float	Calculated oob straylight nir dp factor, red side radiance, for monitoring purposes	
<pre>monitor_gain_drift factor</pre>	float	Gain drift correction factor as used in the GainDriftCorrectionUVN algorithm. Applied gain drift factor depends on the Engineering CCD gain index data and the gain drift CKD.	

 Table 20: NetCDF variables in the QualityAssessmentGroup for radiance calibration products

7.3.3.4 Irradiance calibration groups

ObservationsGroup		
Variable	Туре	Description
time	int	Reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start.
spectral_channel	int	Coordinate variable defining the indices in the spectral dimension
scanline	int	Coordinate variable defining the indices along track
pixel	int	Coordinate variable defining the indices across track
delta_time	int	Time difference with time for each measurement
irradiance	float	Measured spectral irradiance for each spectral pixel

ObservationsGroup (cont'd)		
Variable	Туре	Description
irradiance_error	byte	Estimate of the systematic error (accuracy) of the measured spectral radiance (includes calibration and model errors).
irradiance_noise	byte	Estimate of the statistical error (precision) of the measured spectral irradiance (includes shot noise and read noise)
quality_level	ubyte	Overall quality assessment information for each (spectral) pixel
spectral_channel_quality	ubyte	Quality assessment information for each (spectral) pixel
<pre>detector_row qualification</pre>	ushort	Qualification flag indicating the detector row type or state
<pre>detector_column qualification</pre>	ushort	Qualification flag indicating column type or state
measurement_quality	ushort	Overall quality information for a measurement

Table 21: NetCDF variables in the ObservationGroup for irradiance calibration products

GeodataGroup		
Variable	Туре	Description
satellite_orbit_phase	float	Relative offset (0.0 1.0) of the measurement in the orbit
satellite_altitude	float	The altitude of the spacecraft relative to the WGS84 reference ellipsoid
satellite_latitude	float	Latitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
satellite_longitude	float	Longitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
solar_azimuth_angle	float	Azimuth angle of the sun measured from the instrument
solar_elevation_angle	float	Elevation angle of the sun measured from the instrument.
earth_sun_distance	float	Distance between the Earth and Sun
<pre>satellite_shadow fraction</pre>	float	Shadow fraction from S/C midnight-noon [0,4], umbral shadow [0,1], penumbral shadow [1,2], no shadow shadow-side [2,3], no shadow sun-side [3,4]

 Table 22: NetCDF variables in the GeodataGroup for irradiance calibration products

InstrumentGroup		
Variable	Туре	Description
processing_class	short	High level identification of the type of measurement, for example earth / radiance, sun / irradiance, WLS calibration, LED calibration, dark current / background, etc.
instrument_configuration	compound	Identifier (number) that identifies the (detailed) type of measurement and the configuration of the instrument
instrument_settings	compound	All fields that determine the instrument configuration and are relevant for data processing, like exposure tme, binning factors, co-addition period, gain settings, status of calibration unit, etc.
housekeeping_data	compound	Fields that describe scanline dependent instrument characteristics, like detector temperatures, etc.
nominal_wavelength	float	The nominal spectral wavelength for each cross track pixel as a function of the spectral channel.

InstrumentGroup (cont'd)		
Variable	Туре	Description
nominal_wavelength_error	float	The nominal spectral wavelength standard deviation for each cross track pixel as a function of the spectral channel.
binning_table	compound	Contains the binning configuration for all of the instrument configurations used in the group. Not present in SWIR products
calibrated_wavelength	float	Calibrated wavelength of each spectral pixel
<pre>calibrated_wavelength error</pre>	float	Calibrated wavelength error of each spectral pixel
<pre>measurement_to_detector row_table</pre>	compound	Conversion table from measurement row to begin and end row on detector
sample_cycle	int	Index of cycle. During one sample cycle an integer number of scanlines is collected
sample_cycle_length	int	Length of sample_cycle

Table 23: NetCDF variables in the InstrumentGroup for irradiance calibration products

QualityAssessmentGroup		
Variable	Туре	Description
detector_pixel_filling histogram	int	Histogram of the detector pixel filling in electrons for each scanline
offset_static_ckd	compound	Detector and electronics offset value, obtained from the calibration key-data
offset_prepostscan pixels	compound	Detector and electronics offset value calculated from the detector's pre- and postscan pixels
offset_readout_register	compound	Detector and electronics offset value calculated from the detector's read-out register
offset_overscan_rows	compound	Detector and electronics offset value calculated from the detector's overscan rows
offset_overscan_columns	compound	Detector and electronics offset value calculated from the detector's overscan columns
monitor_smear_observed	float	Observed detector smear values from the masked regions of the detector, for monitoring purposes
monitor_smear_calculated	float	Calculated detector smear values as used for the detector smear correction, for monitoring purposes
monitor_straylight observed	float	Observed stray light from the stray light areas on the detector for monitoring purposes
monitor_straylight calculated	float	Calculated stray light, for monitoring purposes
monitor_overscan_rows	float	Signal from the detector's overscan rows, for monitoring purposes
monitor_gain_alignment factor	float	Gain alignment factor for the measurement calculated in the GainAlignmentCalculationUVN algorithm. Applied gair alignment factor depends on the settings of this algorithm Default, the CKD setting of the gain alignment correction factor is used, not the calculated.
monitor_read_out register	float	Spectral channel signal values as read from the read our register
monitor_irradiance signal	float	Average irradiance of a small wavelength band around the specified wavelength, for monitoring purposes.

QualityAssessmentGroup (cont'd) Variable Type Description		
	Туре	Description
monitor_irradiance_fit	float	Wavelength shift for a small wavelength band around the specified wavelength, for monitoring purposes
<pre>percentage_spectral channels_missing</pre>	float	Percentage of spectral channels for which the missing flag is set
<pre>percentage_spectral channels_defective</pre>	float	Percentage of spectral channels for which the defective flag is set
<pre>percentage_spectral channels_processing error</pre>	float	Percentage of spectral channels for which the processing error flag is set
<pre>percentage_spectral channels_saturated</pre>	float	Percentage of spectral channels for which the saturated flag is set
<pre>percentage_spectral channels_transient</pre>	float	Percentage of spectral channels for which the transient flag is set
<pre>percentage_spectral channels_rts</pre>	float	Percentage of spectral channels for which the RTS flag is set
<pre>percentage_spectral channels_underflow</pre>	float	Percentage of spectral channels for which the underflow flag is set
<pre>percentage_spectral channels_per_scanline missing</pre>	float	Percentage of spectral channels per scanline for which the missing flag is set
percentage_spectral channels_per_scanline defective	float	Percentage of spectral channels per scanline for which the defective flag is set
<pre>percentage_spectral channels_per_scanline processing_error</pre>	float	Percentage of spectral channels per scanline for which the processing error flag is set
<pre>percentage_spectral channels_per_scanline saturated</pre>	float	Percentage of spectral channels per scanline for which the saturated flag is set
<pre>percentage_spectral channels_per_scanline transient</pre>	float	Percentage of spectral channels per scanline for which the transient flag is set
<pre>percentage_spectral channels_per_scanline rts</pre>	float	Percentage of spectral channels per scanline for which the RTS flag is set
<pre>percentage_spectral channels_per_scanline underflow</pre>	float	Percentage of spectral channels per scanline for which the underflow flag is set
<pre>percentage_scanlines with_processing_steps skipped</pre>	float	Percentage of scanlines for which one or more processing steps were skipped
percentage_scanlines_in south_atlantic_anomaly	float	Percentage of scanlines in the South Atlantic Anomaly (SAA)
percentage_scanlines_in spacecraft_manoeuvre	float	Percentage of scanlines affected by spacecraft manoeuvres
percentage_scanlines with_solar_angles_out of_nominal_range	float	Percentage of scanlines for which the solar angles are outside the nominal range
<pre>percentage_scanlines with_thermal_instability</pre>	float	Percentage of scanlines for which the instrument tempera- ture is out of its nominal range

QualityAssessmentGroup (cont'd)		
Variable	Туре	Description
oob_sl_nir_dp_factor blu_irr	float	Calculated oob straylight nir dp factor, blue side irradiance, for monitoring purposes
oob_sl_nir_corr_row_avg blu_irr	float	Calculated oob straylight nir correction row average, blue side radiance, for monitoring purposes
<pre>oob_sl_nir_dp_factor red_irr</pre>	float	Calculated oob straylight nir dp factor, red side irradiance, for monitoring purposes
<pre>oob_sl_nir_corr_row_avg red_irr</pre>	float	Calculated oob straylight nir correction row average, red side irradiance, for monitoring purposes
monitor_gain_drift factor	float	Gain drift correction factor as used in the GainDriftCorrectionUVN algorithm. Applied gain drift factor depends on the Engineering CCD gain index data and the gain drift CKD.

Table 24: NetCDF variables in the QualityAssessmentGroup for irradiance calibration products

7.3.3.5 Other calibration groups

ObservationsGroup		
Variable	Туре	Description
time	int	Reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00 UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start.
delta_time	int	Time difference with time for each measurement
small_pixel_signal	float(*)	Measured signal for the spectral channel dedicated for the small pixel measurements
quality_level	ubyte	Overall quality assessment information for each (spectral) pixel
spectral_channel_quality	ubyte	Quality assessment information for each (spectral) pixel
<pre>detector_row qualification</pre>	ushort	Qualification flag indicating the detector row type or state
<pre>detector_column qualification</pre>	ushort	Qualification flag indicating column type or state
measurement_quality	ushort	Overall quality information for a measurement
signal	float	Measured signal for the spectral channel
signal_error	byte	Estimate of the systematic error (accuracy) of the measured signal (includes calibration and model errors).
signal_noise	byte	Estimate of the statistical error (precision) of the measured signal (includes shot noise and read noise)
signal_avg	float	Averaged measured spectral signal for each spectral pixel of all measurements in the group
signal_avg_error	float	Average signal error for each spectral pixel of all measurements in the group
signal_avg_noise	float	Average signal noise for each spectral pixel of all measurements in the group
signal_avg_spectral channel_quality	ubyte	Quality assessment information about a (spectral) pixel in all measurements.
signal_avg_quality_level	ubyte	Overall calculated quality assessment information for each (spectral) pixel in the averaged data
signal_avg_row	float	Averaged measured spectral signal value of a single row in a measurement

ObservationsGroup (cont'd)		
Variable	Туре	Description
signal_avg_col	float	Averaged measured spectral signal value of a single column in a measurement
signal_avg_data	float	Averaged measured spectral signal value of a single measurement
signal_avg_std	float	Average signal standard deviation for each spectral pixel of all measurements in the group
scanline	int	Coordinate variable defining the indices along track
pixel	int	Coordinate variable defining the indices across track
spectral_channel	int	Coordinate variable defining the indices in the spectral dimension

 Table 25:
 NetCDF variables in the ObservationGroup for calibration products

GeodataGroup		
Variable	Туре	Description
earth_sun_distance	float	Distance between the Earth and Sun
satellite_orbit_phase	float	Relative offset (0.0 1.0) of the measurement in the orbit
satellite_altitude	float	The altitude of the spacecraft relative to the WGS84 reference ellipsoid
satellite_latitude	float	Latitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
satellite_longitude	float	Longitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid
<pre>satellite_shadow fraction</pre>	float	Shadow fraction from S/C midnight-noon [0,4], umbral shadow [0,1], penumbral shadow [1,2], no shadow shadow-side [2,3], no shadow sun-side [3,4]

 Table 26: NetCDF variables in the GeodataGroup for calibration products

InstrumentGroup		
Variable	Туре	Description
processing_class	short	High level identification of the type of measurement, for example earth / radiance, sun / irradiance, WLS calibration, LED calibration, dark current / background, etc.
instrument_configuration	compound	Identifier (number) that identifies the (detailed) type of measurement and the configuration of the instrument
instrument_settings	compound	All fields that determine the instrument configuration and are relevant for data processing, like exposure tme, binning factors, co-addition period, gain settings, status of calibration unit, etc.
housekeeping_data	compound	Fields that describe scanline dependent instrument characteristics, like detector temperatures, etc.
nominal_wavelength	float	The nominal spectral wavelength for each cross track pixel as a function of the spectral channel.
nominal_wavelength_error	float	The nominal spectral wavelength standard deviation for each cross track pixel as a function of the spectral channel.
binning_table	compound	Contains the binning configuration for all of the instrument configurations used in the group. Not present in SWIR products

InstrumentGroup (cont'd)		
Variable	Туре	Description
storage_time	float	The time a row has resided in the storage area of the detector during read-out
<pre>measurement_to_detector row_table</pre>	compound	Conversion table from measurement row to begin and end row on detector
sample_cycle	int	Index of cycle. During one sample cycle an integer number of scanlines is collected
sample_cycle_length	int	Length of sample_cycle

Table 27: NetCDF variables in the InstrumentGroup for calibration products

QualityAssessmentGroup		
Variable	Type	Description
detector_pixel_filling	int	Histogram of the detector pixel filling in electrons for each scanline
histogram		
offset_static_ckd	compound	Detector and electronics offset value, obtained from the calibration key-data
offset_prepostscan pixels	compound	Detector and electronics offset value calculated from the detector's pre- and postscan pixels
offset_readout_register	compound	Detector and electronics offset value calculated from the detector's read-out register
offset_overscan_rows	compound	Detector and electronics offset value calculated from the detector's overscan rows
offset_overscan_columns	compound	Detector and electronics offset value calculated from the detector's overscan columns
monitor_smear_observed	float	Observed detector smear values from the masked regions of the detector, for monitoring purposes
monitor_smear_calculated	float	Calculated detector smear values as used for the detector smear correction, for monitoring purposes
monitor_straylight observed	float	Observed stray light from the stray light areas on the detector for monitoring purposes
monitor_straylight calculated	float	Calculated stray light, for monitoring purposes
monitor_overscan_rows	float	Signal from the detector's overscan rows, for monitoring purposes
monitor_read_out register	float	Spectral channel signal values as read from the read out register
monitor_gain_alignment factor	float	Gain alignment factor for the measurement calculated in the GainAlignmentCalculationUVN algorithm. Applied gain alignment factor depends on the settings of this algorithm Default, the CKD setting of the gain alignment correction factor is used, not the calculated.
<pre>percentage_spectral channels_missing</pre>	float	Percentage of spectral channels for which the missing flag is set
<pre>percentage_spectral channels_defective</pre>	float	Percentage of spectral channels for which the defective flag is set
<pre>percentage_spectral channels_processing error</pre>	float	Percentage of spectral channels for which the processing error flag is set
percentage_spectral channels_saturated	float	Percentage of spectral channels for which the saturated flag is set

QualityAssessmentGroup (conf	QualityAssessmentGroup (cont'd)		
Variable	Туре	Description	
percentage_spectral channels_transient	float	Percentage of spectral channels for which the transient flag is set	
<pre>percentage_spectral channels_rts</pre>	float	Percentage of spectral channels for which the RTS flag is set	
<pre>percentage_spectral channels_underflow</pre>	float	Percentage of spectral channels for which the underflow flag is set	
<pre>percentage_spectral channels_per_scanline missing</pre>	float	Percentage of spectral channels per scanline for which the missing flag is set	
<pre>percentage_spectral channels_per_scanline defective</pre>	float	Percentage of spectral channels per scanline for which the defective flag is set	
<pre>percentage_spectral channels_per_scanline processing_error</pre>	float	Percentage of spectral channels per scanline for which the processing error flag is set	
<pre>percentage_spectral channels_per_scanline saturated</pre>	float	Percentage of spectral channels per scanline for which the saturated flag is set	
<pre>percentage_spectral channels_per_scanline transient</pre>	float	Percentage of spectral channels per scanline for which the transient flag is set	
<pre>percentage_spectral channels_per_scanline rts</pre>	float	Percentage of spectral channels per scanline for which the RTS flag is set	
<pre>percentage_spectral channels_per_scanline underflow</pre>	float	Percentage of spectral channels per scanline for which the underflow flag is set	
<pre>percentage_scanlines with_processing_steps skipped</pre>	float	Percentage of scanlines for which one or more processing steps were skipped	
<pre>percentage_scanlines_in south_atlantic_anomaly</pre>	float	Percentage of scanlines in the South Atlantic Anomaly (SAA)	
percentage_scanlines_in spacecraft_manoeuvre	float	Percentage of scanlines affected by spacecraft manoeuvres	
percentage_scanlines with_solar_angles_out of_nominal_range	float	Percentage of scanlines for which the solar angles are outside the nominal range	
<pre>percentage_scanlines with_thermal_instability</pre>	float	Percentage of scanlines for which the instrument temperature is out of its nominal range	
monitor_gain_drift factor	float	Gain drift correction factor as used in the GainDriftCorrectionUVN algorithm. Applied gain drift factor depends on the Engineering CCD gain index data and the gain drift CKD.	
monitor_radiance_signal	float	Average radiance of a small wavelength band around the specified wavelength, for monitoring purposes.	
monitor_irradiance signal	float	Average irradiance of a small wavelength band around the specified wavelength, for monitoring purposes.	
monitor_radiance_fit	float	Wavelength shift for a small wavelength band around the specified wavelength, for monitoring purposes	
monitor_irradiance_fit	float	Wavelength shift for a small wavelength band around the specified wavelength, for monitoring purposes	

 Table 28: NetCDF variables in the QualityAssessmentGroup for calibration products

7.3.4 Engineering product

The engineering products are input for the calibration processors who will use these products for generating updates to the calibration key data and for generating trending and monitoring products. The L1b engineering product is only intended for calibration and monitoring purposes. All instrument information needed or relevant for L2 processing will be contained within the radiance and irradiance products. As such, the engineering product is expected to be used by experts investigating and troubleshooting instrument performance anomalies. For that reason, only a high level description of the product is provided here. However, this description together with the detailed information contained in the netCDF and the Command and Telemetry Handbook [RD16] will allow expert users to retrieve the relevant engineering data.

7.3.4.1 NetCDF File Structure

The engineering product has a different NetCDF file structure than the file structure for radiance and irradiance products described in section 7.2.1. The file format of the L1b engineering product is structured using groups compliant with the netCDF-4 enhanced model. The group hierarchy is as follows ("/" indicating the root of the groups):

```
/global attributes
/MetadataGroup [1]
/MetadataGroup/ISOMetadataGroup [1]
/MetadataGroup/EOPMetadataGroup [1]
/MetadataGroup/ESAMetadataGroup [1]
/DetectorGroup [4]
/DetectorGroup/BandGroup [2]
/DetectorGroup/DetectorHousekeepingGroup [1]
/MeasurementSetGroup [1]
/NominalHouseKeepingGroup/EventsGroup [1]
/NominalHouseKeepingGroup/MechanismGroup [1]
/NominalHouseKeepingGroup/HeatersGroup [1]
/NominalHouseKeepingGroup/LEDInformationGroup [1]
/NominalHouseKeepingGroup/OBDHGroup [1]
/NominalHouseKeepingGroup/SoftwareConfigurationGroup [1]
/NominalHouseKeepingGroup/TemperaturesGroup [1]
/NominalHouseKeepingGroup/VersionInformationGroup [1]
/NominalHouseKeepingGroup/VoltagesGroup [1]
/ProcessorGroup [1]
/AncillaryDataGroup [1]
/SatelliteInformationGroup[1]
```

All groups in the schema listed above are always present in the netCDF file. The relation between detector type, detector number and bands can be found in Table 10. In the L0 product instrument parameters are available in engineering data packages. The L01b processor extracts all the parameters from these data packages and groups them in variables which are then stored in the netCDF engineering product. The variables are stored in different groups; the groups and the variables they contain are described in the following sections.

7.3.4.2 Naming conventions

Except for the group names, all naming conventions described in section 7.2.2 apply. Group names are in upper case and consist of alphanumeric characters and underscores. Spaces are not allowed. The group names for the different groups are defined as follows:

DetectorGroup fixed to: DETECTOR1 | DETECTOR2 | DETECTOR3 | DETECTOR4

BandGroup fixed to: BAND1 | BAND2 | BAND3 | BAND4 | BAND5 | BAND6 | BAND7 | BAND8

DetectorHousekeepingGroup fixed to: DETECTOR_HK

MeasurementSetGroup fixed to: MSMTSET

NominalHouseKeepingGroup fixed to: NOMINAL_HK

EventsGroup fixed to: EVENTS

MechanismGroup fixed to: MECHANISMS

HeatersGroup fixed to: HEATERS

LEDInformationGroup fixed to LED_DATA

OBDHGroup fixed to OBDH DATA

SoftwareConfigurationGroup fixed to SW_CFG

TemperaturesGroup fixed to TEMPERATURES

VersionInformationGroup fixed to VERSION_INFO

VoltagesGroup fixed to VOLTAGES

SatelliteInformationGroup fixed to SATELLITE_INFO

AncillaryDataGroup fixed to ANCILLARY_DATA

7.3.4.3 Engineering product groups

The following tables (Table 29 to Table 47) list all variables in the engineering product as they appear in the different groups. A detailed description is outside the scope of this document.

DetectorGroup UVN detect	tor	
Variable	Туре	Description
afe_common_config	compound	Extracted AFE setting common for both bands on the detector
afe_reg_vals	compound	Raw AFE register values from which the AFE parameters are extracted
clock	compound	Clock information of the detector electronics
ft_table	compound	Frame Transfer synchronization parameters as stored in the DEM
heater_cfg	compound	Heater settings for the detector
misc	compound	Miscellaneous parameters for the detector that don't fit in other groups
timing	componud	Detector specific timing parameters. Partly extracted from ft_table parameters

Table 29: NetCDF variables in the DetectorHousekeepingGroup of the engineering product for UVN detectors (detector1 - detector3)

DetectorGroup SWIR de	tector	
Variable	Туре	Description
ft_table	compound	Frame Transfer synchronization parameters as stored in the DEM
swir_settings	compound	Extracted detector settings which are valid for both bands read from the SWIR Detector
timing	componud	Detector specific timing parameters. Partly extracted from ft_table parameters

Table 30: NetCDF variables in the DetectorGroup of the engineering product for the SWIR detector (detector4)

BandGroup UVN detector		
Variable	Туре	Description
afe_band_cfg	compound	Band specific settings extracted from the AFE registers.
readout_cfg	compound	Read-out settings for the band as used by the ISM.

Table 31: NetCDF variables in the BandGroup for the engineering product for the UVN detectors (detector1-detector3)

BandGroup SWIR detector		
Variable	Type	Description
readout_cfg	compound	Read-out settings for the band as used by the ISM.

Table 32: NetCDF variables in the BandGroup for the engineering product for the SWIR detector (detector4)

DetectorHousekeepingGroup UVN detector		
Variable	Туре	Description
dem_cntrs	compound	DEM counter values for the detector
power_info	compound	Current and voltage values specific for the detector
spare_info	compound	Spare values in detector Housekeeping data
stat_info	compound	Extracted status values specific for the detector
temperature_info	compound	Temperature values specific for the detector
version_info	compound	DEM firmware version information for the detector

Table 33: NetCDF variables in the DetectorHousekeepingGroup for the engineering product for the UVN detectors (detector1-detector3)

DetectorHousekeepingGroup SWIR detector		
Variable	Туре	Description
adc_info	compound	Extracted current SWIR ADC values
dem_cntrs	compound	DEM counter values for the detector
err_cntrs	compound	SWIR specific error counters
heater_data	compound	Information about SWIR detector internal heater settings
power_info	compound	Current and voltage values specific for the detector
stat_info	compound	Extracted status values specific for the detector
temperature_info	compound	Temperature values specific for the detector
tmtc_info	compound	Extracted TMTC counter values
misc	compound	Miscellaneous parameters for the detector that don't fit in other groups

Table 34: NetCDF variables in the DetectorHousekeepingGroup for the engineering product for the SWIR detector (detector4)

MeasurementSetGroup		
Variable	Туре	Description
msmtset	compound	Measurement set information of all engineering data packages, like processing class, instrument configuration and selected DEM and ISM tables

Table 35: NetCDF variables in the MeasurementSetGroup for the engineering product

EventsGroup		
Variable	Туре	Description
events	compound	General event information extracted from the housekeeping data
processing_events	compound	Processing event information extracted from the housekeeping data

 Table 36:
 NetCDF variables in the EventsGroup for the engineering product

MechanismsGroup		
Variable	Туре	Description
fmm	compound	Status information about the folding mirror mechanism on the instrument
difm	compound	Status information about the diffuser mechanism on the instrument

Table 37: NetCDF variables in the MechanismsGroup for the engineering product

HeatersGroup		
Variable	Туре	Description
heater_data	compound	Settings and status information about the heaters on the instrument
peltier_info	compound	Settings and status information about the peltier elements on the instrument

Table 38: NetCDF variables in the HeatersGroup for the engineering product

LEDInformationGroup		
Variable	Туре	Description
led_data	compound	Status and voltage information about the LEDs on the instrument

Table 39: NetCDF variables in the LEDInformationGroup for the engineering product

OBDHGroup		
Variable	Туре	Description
obdh_data	compound	Onboard data handling data parameters

Table 40: NetCDF variables in the OBDHGroup for the engineering product

SoftwareConfigurationGroup		
Variable	Туре	Description
params	compound	Software configuration parameters of the instrument.

Table 41: NetCDF variables in the SoftwareConfigurationGroup for the engineering product

TemperaturesGroup		
Variable	Type	Description
hires_temperatures	compound	Calculated temperatures of the high-resolution temperature sensors on the instrument
instr_temperatures	compound	Calculated temperatures of the instrument temperature sensor on the instrument
named_temperatures	compound	Calculated temperatures of named sensors in the engineering data
reference_thermistors	compound	Calculated resistor values of the reference thermistors

Table 42: NetCDF variables in the TemperaturesGroup for the engineering product

VersionInformationGroup		
Variable	Туре	Description
info	compound	Version information of onboard software of the instrument

Table 43: NetCDF variables in the VersionInformationGroup for the engineering product

VoltagesGroup		
Variable	Туре	Description
detector1_voltages	compound	Voltages measured for detector1
detector2_voltages	compound	Voltages measured for detector2
detector3_voltages	compound	Voltages measured for detector3
detector4_voltages	compound	Voltages measured for detector4
instrument_voltages	compound	Instrument voltages

Table 44: NetCDF variables in the VoltagesGroup for the engineering product

ProcessorGroup		
Variable	Туре	Description
job_configuration	string array	Joborder used for generating this I1b file
algorithm_configuration	string array	Algorithm table used for generating this I1b file
processing_configuration	string array	Processing configuration used for generating this I1b file

 Table 45: NetCDF variables in the ProcessorGroup for the engineering product

AncillaryDataGroup		
Variable	Туре	Description
aocs_data	compound	AOCS values of the satellite platform
attitude_data	compound	Attitude data in of the satellite platform
gps_satellite_data	compound	GPS satellite data of the satellite platform
navigation_data	compound	Navigation data of the satellite platform
propagated_gps_pos_data	compound	Propagated GPS position of the satellite platform
star_tracker	compound	Star tracker configuration of the satellite platform
configuration		

AncillaryDataGroup (cont'd)		
Variable	Туре	Description
temperatures	compound	Temperatures measured on the satellite platform

Table 46: NetCDF variables in the AncillaryDataGroup for the engineering product

SatelliteInformationGroup		
Variable	Туре	Description
satellite_pos	compound	Instrument position information calculated by the L1b processor.

Table 47: NetCDF variables in the SatelliteInformationGroup for the engineering product

8 TROPOMI L1b product specification

8.1 NetCDF4 global attributes

In the "Metadata specification for the TROPOMI L1b products" [RD9] it is discussed how metadata content can be provided by the use of global attributes, thereby facilitating the discovery and understanding of the dataset. The CF-Metadata conventions [RD13] and the Attribute Conventions for Dataset Discovery [ER20] recommend a comprehensive set of attributes to be included as metadata elements. However, for TROPOMI L1b products it was decided to create specific metadata groups in which INSPIRE (ISO), ESA EOP and ESA FFS related metadata information is stored. Many of the metadata attributes proposed by CF-Metadata Conventions and ACDD overlap with the ISO 19115-2 standard and hence the same information can be found in the metadata groups.

In view of the above, only a very limited set of metadata elements is included as global attributes. These attributes provide a convenient way to users of the data products to retrieve quickly some basic information. In Table 48 a list is presented of metadata items included as global attributes in the netCDF product file.

Attribute	ISO mapping	Remark
Conventions		fixed: "CF-1.6"
title	MI_Metadata.identificationInfo. citation.title	
summary	MI_Metadata.identificationInfo. abstract	
institution	MI_Metadata.identificationInfo. pointOfContact.organisationName	
time_coverage_start	MI_Metadata.identificationInfo. extent.temporalElement.beginPosition	UTC time (start of measurements)
time_coverage_end	MI_Metadata.identificationInfo. extent.temporalElement.endPosition	UTC time (end of measurements)
time_reference		UTC time (reference time = "yyyy-mm-ddT00:00:00Z")
orbit		orbit number at which measurements of the data granule start
orbit_begin_icid	First begin trigger icid encountered in L0 data	
orbit_end_icid	Last end trigger icid encountered in L0 data	
orbit_type	(E2) Orbit type	"UNKN" is not known
orbit_type_id	(E2) orbit type id	65535 if not kown
institution		fixed: "KNMI"
processor_version	Version of the L01b processor used for generating product	
library_information	Version information of the libraries used by L01b processor	

Table 48: Global attributes.

Remark 1: UTC times are in expressed in the ISO 8601 format (i.e. YYYY-MM-DDThh:mm:ssZ).

Remark 2: The values of time_coverage_start and time_coverage_end truncated to integer seconds refer to the actual start and end of the measurements, i.e. the measurement time of the first and last scanline, respectively. Therefore, these times do not correspond to the times used in the filename of the product, where the start and end of the orbit (or data slice) are used instead (see section 7.1.1.3).

Remark 3: In case there are no scanlines in the processed orbit the values for time_coverage_start and time_coverage_end are equal to "NULL".

Remark 4: For the definition of the reference time see section 8.4.

8.2 Metadata specification

The netCDF file will have one metadata group (named METADATA) which is a container for specific metadata groups containing metadata information required to produce INSPIRE conformant [RD14], ESA EOP conformant [RD15] and ESA FFS conformant [AD6] XML formatted metadata records. These three specific metadata groups named ISO_METADATA, EOP_METADATA and ESA_METADATA, are structured in subgroups containing only attributes.

The structure of the groups reflects the structure of the particular metadata model, i.e. the groups correspond largely with the major metadata objects of the model. Whenever applicable, the groups contain an attribute with name="objectType" with a value equal to the corresponding object (including namespace) from the metadata model. This approach follows the groups-of-groups approach suggested by [ER22]. In addition, the attributes containing the relevant metadata information are given the same name as the corresponding element of the metadata model.

Details on the metadata can be found in [RD9].

Attribute	Description
ancillary_variables	Attribute to express relationship with other variables; For example, to relate instrument data with associated measures of uncertainty.
bounds	The name of the variable that contains the vertices of the cell boundaries. Used to relate the variable to a coordinate variable.
coordinates	Indicates the spatiotemporal coordinate variables that are needed to geo-locate the data. Contains full path when coordinate variables are not in the same group.
comment	Miscellaneous information about the variable or methods used to produce it
flag_meanings	The flag_meanings attribute is a string whose value is a blank separated list of descriptive words or phrases, one for each flag value.
flag_values	The flag_values attribute is the same type as the variable to which it is attached, and contains a list of the possible flag values
long_name	A long descriptive name describing the content of the variable
standard_name	A standardized name describing the content of the variable
units	A character string that specifies the units used for the variable's data (required for all variables that represent dimensional quantities, except for boundary variables)
valid_max	The maximum valid value for the variable
valid_min	The minimum valid value for the variable
_FillValue	The FillValue attribute specifies the fill value used for missing or undefined data

Table 49: Description of variable attributes

8.3 Fill values

The CF convention recommends to use the _FillValue attribute (or to use the default values) to assign a specific value to NetCDF variables in case of undefined or missing data. The _FillValue depends on the data type of the variable. The following table (Table 50) lists the values used for the various base data types. In the sections hereafter, the _FillValue attribute will only be present in de CDL descriptions if it is different from the default value.

Туре	Storage	_FillValue
byte	8-bit signed integer	-127
ubyte	8-bit unsigned integer	255
short	16-bit signed integer	-32767
ushort	16-bit unsigned integer	65535
int	32-bit signed integer	-2147483647
float	32-bit floating point	9.9692099683868690e+36 (hex: 0x1.ep+122)
double	64-bit floating point	9.9692099683868690e+36 (hex: 0x1.ep+122)
float(*)	32-bit floating point(*)	9.9692099683868690e+36 (hex: 0x1.ep+122)

Table 50: NetCDF type definitions and fill values. Remark 1: The base type for a VLEN type (Variable Length Array) is indicated as type(*), i.e. float(*), short(*), etc. Remark 2: In order to avoid rounding errors, it is recommended to programmers to use the hexadecimal notation when specifying the above fill values for float and double types.

8.4 Variable: time

The variable time(time) is the reference time of the measurements. The reference time is set to yyyy-mm-ddT00:00:00Z UTC, where yyyy-mm-dd is the day on which the measurements of a particular data granule start. The delta_time(scanline) variable (see section 8.5) indicates the time difference with the reference time time(time). Thus combining the information of time(time) and delta_time(scanline) yields the measurement time for each scanline as UTC time. The variable time(time) does (intentionally) not include any leap seconds, to make the conversion from time(time) and delta_time(scanline) to an UTC time easier.

The reference time(time) corresponds to the global attribute time_reference which is an UTC time specified as an ISO 8601 date.

	Variable	Storage type	Units
	time	int	seconds
CDL	set to yyyy-mm-ddT00:00:0	e"; .ce 2010-01-01 00:00:00" time of the measuremen UTC, where yyyy-mm-dd	; its. The reference time is l is the day on which the
Remarks		UTC2010-01-01 00:00:00. To attribute time_reference, v	he UTC time defined by this variable which is a UTC time specified as an

Table 51: CDL definition time variable

8.5 Variable: delta_time

The delta_time(scanline) variable indicates the time difference with the reference time time(time) (see section 8.4). Thus combining the information of time(time) and delta_time(scanline) yields the measurement time for each scanline as UTC time. The UTC time derived for the first scanline corresponds to the global attribute time_coverage_start. Similarly, the UTC time derived for the last scanline corresponds to global attribute time_coverage_end. One scanline measurement is the result of adding independent measurements during one co-addition period. The time attributed to the scanline measurement is equal to the center time of the co-addition period defined by the first and last sample in this co-addition.

	Variable	Storage type	Units
	delta_time	int	ms
CDL	<pre>int delta_time(time,scanli delta_time:long_name = "of measurement"; delta_time:units = "ms"; delta_time:comment = "Time</pre>	fset from the reference	

Remarks

Table 52: CDL definition delta_time variable

8.6 Variable: ground_pixel

The coordinate variable <code>ground_pixel</code> refers to the across-track dimension of the measurement. The spectral radiance measurements are collected as a function of the two-dimensions (ground pixels across track and wavelengths), of the detector and of the scans. The corresponding dimensions describing the swath in the <code>netCDF</code> product are <code>named</code>: <code>ground_pixel</code>, <code>spectral_channel</code> and <code>scanline</code>, <code>respectively</code>.

	Variable	Storage type	Units
	ground_pixel	int	none
CDL	<pre>int ground_pixel(ground_pixel:long_name = ground_pixel:units = "1" ground_pixel:comment = "Titack; index starts at 0"</pre>	"across track dimension; his dimension variable o	
Remarks	Coordinate variable; The grou	-	west to east, i.e. a higher index part of the orbit.

Table 53: CDL definition ground_pixel variable

8.7 Variable: pixel

The coordinate variable pixel refers to the across-track dimension of the measurement. Because during the irradiance measurements the sensors are not imaging the Earth's surface but are measuring the solar irradiance, pixel is the preferred name (rather than ground_pixel) for the across-track dimension.

	Variable	Storage type	Units
	pixel	int	none
CDL	<pre>int pixel(pixel) ; pixel:long_name = "across track dimension index" ; pixel:units = "1" ; pixel:comment = "This dimension variable defines the indices across track; index starts at 0" ;</pre>		
Remarks	<u>-</u>	to east, i.e. a higher index in co	ound_pixel order in the radiance orresponds to a higher longitude

Table 54: CDL definition pixel variable

8.8 Variable: scanline

The coordinate variable scanline refers to the along-track dimension of the measurement. Scanline numbering starts a 0 for each product. (Thus: the scanline value of 0 is not related to a 'fixed' time but to the first measurement in the product.)

	Variable	Storage type	Units
	scanline	int	none
CDL	<pre>int scanline(scanline); scanline:long_name = "along track dimension index"; scanline:units = "1"; scanline:comment = "This dimension variable defines the indices along track dimension.";</pre>		
Remarks	index starts at 0"; Coordinate variable. The scanlines before "later" measurements	s are time-ordered; meaning	that "earlier" measurements come

Table 55: CDL definition scanline variable

8.9 Variable: spectral_channel

	Variable	Storage type	Units
	spectral_channel	int	none
CDL	spectral_channel:units =	me = "wavelength dimension "1" ; = "This dimension variabl	
Remarks	Coordinate variable; The specindex corresponds to a higher	•	reasing wavelength, i.e. a higher

Table 56: CDL definition spectral_channel variable

8.10 Variable: radiance

TROPOMI measures the light radiated from and reflected by the Earth's surface and atmosphere in a given direction. The *spectral radiance* is a measure of the rate of the energy received per unit area an per unit of the solid angle as a function of wavelength and is expressed in SI units $W.m^{-2}.nm^{-1}.sr^{-1}$. Because TROPOMI actually measures the rate of photons per unit area and the exact wavelength is not known the *spectral photon radiance* is provided in the L1b product. The spectral photon radiance is expressed with SI units $mol.s^{-1}.m^{-2}.nm^{-1}.sr^{-1}$ using the amount of photons. ² In addition, the spectral photon radiance provided is normalized to the Earth-Sun distance of 1AU. ³ If the Earth spectral radiance is denoted by S_{earth} , the wavelength by λ and the Earth-Sun distance by R, then the Earth spectral radiance normalized at 1AU is given by:

$$S_{\rm earth}(R_{\rm AU},\lambda) = \left(\frac{R}{R_{\rm AU}}\right)^2 S_{\rm earth}(R,\lambda) ,$$
 (1)

where $R_{\rm AU}$ is the Earth-Sun distance equal to 1AU. Similarly, the spectral photon radiance is normalized using the factor $\left(\frac{R}{R_{\rm AU}}\right)^2$.

	Variable	Storage type	Units
	radiance	float	$mol.s^{-1}.m^{-2}.nm^{-1}.sr^{-1}$
CDL	<pre>float radiance(time,scanlin radiance:long_name = "spect radiance:units = "mol.s-1.m radiance:coordinates = "lon radiance:ancillary_variable spectral_channel_quality gr radiance:comment = "Measure</pre>	<pre>tral photon radiance" n-2.nm-1.sr-1"; ngitude latitude"; es = "radiance_noise round_pixel_quality"</pre>	; radiance_error quality_level ;
Remarks	line with the standard_name for	radiance that has been su	red by sensors on board satellites. In aggested by the cf-satellite user com- ral_photon_radiance is suggested

Table 57: CDL definition radiance variable

8.11 Variable: radiance_noise

The radiance noise is represented as a 10 times the base-10 logarithmic value of the ratio between the radiance and the random error. The representation of the errors in dB is assumed to be accurate and precise. Using a

¹ Mole (unit symbol mol) corresponds to Avogadro's number N_A and is equal to 6.02214129.10²³ photons or N_A = 6.02214129.10²³ mol⁻¹.

³ 1 Astronomical Unit (AU) =149,597,870,700 meters

byte type has a considerable contribution as to limiting the final product file size. Given the signal S (stored in radiance) and the signal-to-noise-ratio R (stored in radiance_noise), the noise (random error / precision) N can be calculated as:

$$N = \frac{S}{10^{R/10}} \tag{2}$$

	Variable	Storage type	Units
	radiance_noise	byte	none
CDL	byte radiance_noise(time, radiance_noise:long_name deviation"; radiance_noise:units = "1 radiance_noise:coordinate radiance_noise:comment = standard deviation random expressed in decibel (dB) of the ratio between the	= "spectral photon radiand"; s = "longitude latitude" "The radiance_noise is a derror of the radiance me, i.e. 10 times the base	; measure for the one easurement; it is e-10 logarithmic value

Remarks

Table 58: CDL definition radiance_noise variable

8.12 Variable: radiance_error

The radiance error is represented as a 10 times the base-10 logarithmic value of the ratio between the radiance and the systematic error, i.e. as a signal-to-error-ratio on a dB scale. The representation of the errors in dB is assumed to be accurate and precise. Using a byte type has a considerable contribution as to limiting the final product file size. Given the signal S (stored in radiance) and the signal-to-error-ratio R (stored in radiance_error), the systematic error (accuracy) E can be calculated as:

$$E = \frac{S}{10^{R/10}} \tag{3}$$

	Variable	Storage type	Units
	radiance_error	byte	none
CDL	byte radiance_error(time,	scanline,ground_pixel,spe	ectral_channel);
	radiance_error:long_name	= "spectral photon radian	nce error, one standard
	deviation";		
	radiance_error:units = "1	L" ;	
	radiance_error:coordinate	es = "longitude latitude"	•
	radiance_error:comment =	"The radiance_error is a	measure for the one
	standard deviation error	of the bias of the radian	nce measurement; it is
expressed in decibel (dB), i.e. 10 times the base-10 logarithmi			
		liance and the estimation	_

Remarks

Table 59: CDL definition radiance_error variable

8.13 Variable: irradiance

Every 15 orbits - approximately once every calendar day - TROPOMI will be commanded to perform a solar irradiance measurement. Irradiance is a measurement of solar power and is defined as the rate at which solar energy falls onto a surface. Similar to the spectral radiance, the *spectral irradiance* is the irradiance as function of wavelength. The SI units of spectral irradiance are W.m⁻².nm⁻¹. However, like the case of the radiance variable, the L1b product provides the *spectral photon irradiance* with SI units mol.s⁻¹.m⁻².nm⁻¹. Also the

spectral photon irradiance is normalized to the Earth-Sun distance of 1 AU by applying a factor $\left(\frac{R}{R_{\rm AU}}\right)^2$ (see Equation 1).

	Variable	Storage type	Units
	irradiance	float	$mol.s^{-1}.m^{-2}.nm^{-1}$
CDL	<pre>float irradiance(time,scar irradiance:long_name = "s; irradiance:units = "mol.s; irradiance:ancillary_varia quality_level spectral_ch; irradiance:comment = "Mea; ;</pre>	<pre>pectral photon irradiar -1.m-2.nm-1"; ables = "irradiance_noi annel_quality";</pre>	ice";
Remarks	satellites. In line with the standa	ard_name for radiance that h	as measured by sensors on board as been suggested by the cf-satellite _spectral_photon_irradiance is

Table 60: CDL definition irradiance variable

8.14 Variable: irradiance_noise

The irradiance noise is represented as a 10 times the base-10 logarithmic value of the ratio between the irradiance and the random error, i.e. as a signal-to-noise-ratio on a dB scale. The representation of the noise in dB is assumed to be accurate and precise. Using a byte type has a considerable contribution as to limiting the final product file size. Given the signal *S* (stored in irradiance) and the signal-to-noise-ratio *R* (stored in irradiance_noise), the noise (random error / precision) *N* can be calculated as:

$$N = \frac{S}{10^{R/10}} \tag{4}$$

	Variable	Storage type	Units
	irradiance_noise	byte	none
CDL	byte irradiance_noise(time	ne,scanline,pixel,spectral	_channel) ;
	irradiance_noise:long_nam	ne = "spectral photon irra	adiance noise, one
	standard deviation";		
	<pre>irradiance_noise:units =</pre>	"1" ;	
	irradiance_noise:comment	= "The irradiance_noise i	is a measure for the
	one standard deviation ra	andom error of the irradia	ance measurement; it is
	expressed in decibel (dB)	, i.e. 10 times the base	e-10 logarithmic value of
	the ratio between the irr	radiance and the random en	ror.";

Table 61: CDL definition irradiance_noise variable

8.15 Variable: irradiance_error

Remarks

The irradiance error is represented as a 10 times the base-10 logarithmic value of the ratio between the irradiance and the systematic error, i.e. as a signal-to-error-ratio on a dB scale. The representation of the errors in dB is assumed to be accurate and precise. Using a byte type has a considerable contribution as to limiting the final product file size. Given the signal S (stored in irradiance) and the signal-to-error-ratio R (stored in irradiance_error), the systematic error (accuracy) E can be calculated as:

$$E = \frac{S}{10^{R/10}} \tag{5}$$

	Variable	Storage type	Units
	irradiance_error	byte	none
CDL	byte irradiance_error(tim	e,scanline,pixel,spectral	_channel) ;
	irradiance_error:long_nam	e = "spectral irradiance	error, one standard
	deviation";		
	<pre>irradiance_error:units =</pre>	"1" ;	
	irradiance_error:comment	= "The irradiance_error i	is a measure for the one
	standard deviation error	of the bias of the irradi	ance measurement; it is
	expressed in decibel (dB)	, i.e. 10 times the base	e-10 logarithmic value of
	-	adiance and the estimation	•

Remarks

Table 62: CDL definition irradiance_error variable

8.16 Variable: small_pixel_radiance

One configurable detector pixel, in every row, for both detector output chains, i.e., two columns per detector, is not co-added and is stored separately for every exposure/co-addition of an image. The data for these 'small-pixel columns' are included in the science data and provide information on a higher spatial resolution than the data for other columns, which may be useful for certain studies. Thus for a given wavelength, the small_pixel_radiance is the measurement of the spectral photon radiance expressed with SI units mol.s⁻¹.m⁻².nm⁻¹.sr⁻¹.

The small_pixel_radiance is normalized to the Earth-Sun distance of 1 AU by applying a factor $\left(\frac{R}{R_{\text{AU}}}\right)^2$ (see Equation 1).

	Variable	Storage type	Units	
	small_pixel_radiance	float(*)	$mol.s^{-1}.m^{-2}.nm^{-1}.sr^{-1}$	
CDL	<pre>types: float(*) small_pixel_radiance_type ; small_pixel_radiance_type small_pixel_radiance(time,scanline,ground_</pre>			
	; small_pixel_radiance:long_r small_pixel_radiance:units small_pixel_radiance:_FillV small_pixel_radiance:coordi small_pixel_radiance:commer channel dedicated for the s	= "mol.s-1.m-2.nm-1 Value = 0x1.ep+122; nates = "longitude at = "Measured spect	.sr-1"; latitude"; ral radiance for the spectral	

Remarks small_pixel_type is a netCDF VLEN type

There is no standard_name for photon radiance as measured by sensors on board satellites. In line with the standard_name for radiance that has been suggested by the cf-satellite user community on the Unidata mailing list, toa_outgoing_spectral_photon_radiance is suggested here.

Table 63: CDL definition small_pixel_radiance variable

8.17 Variable: spectral_channel_quality

The spectral_channel_quality provides quality indicators, by means of various flags, for each spectral channel. A more detailed explanation for the flag meanings is provided in table 65. For L2 processing it is recommended to ignore or discard all spectral channels for which the spectral_channel_quality has a value other than 0 (no error).

	Variable	Storage type	Units
	spectral_channel_quality	ubyte	none
CDL	ubyte spectral_channel_qual ; spectral_channel_quality:lo spectral_channel_quality:va spectral_channel_quality:va spectral_channel_quality:fl 128UB; spectral_channel_quality:fl processing_error, saturated spectral_channel_quality:co (spectral) pixel";	<pre>ong_name = "spectral chandlid_min = 0; dlid_max = 254; ordinates = "longitude ag_values = OUB, 1UB, 2</pre> <pre>cag_meanings = no_error; d, transient, rts, under</pre>	annel quality flag"; latitude"; 2UB, 8UB, 16UB, 32UB, 64UB, missing, bad_pixel, rflow;

Remarks

Table 64: CDL definition spectral_channel_quality variable

Val	Value Mask I		Meaning	Explanation	
0x00	0	0xFF	255	no_error	No spectral channel qualification, the spectral channel can be used for further processing
0x01	1	0x01	1	missing	No data is available for the spectral channel
0x02	2	0x02	2	bad_pixel	The spectral channel is defective or unreliable
80x0	8	80x0	8	processing_error	One or more Level 0-1B processing steps were skipped for this spectral channel
0x10	16	0x10	16	saturated	The spectral channel is saturated
0x20	32	0x20	32	transient	A transient signal was detected for the spectral channel
0x40	64	0x40	64	rts	The spectral channel has RTS (Random Telegraph Signal) behaviour
0x80	128	0x80	128	underflow	The spectral channel has too low value

Table 65: Explanation of the flags in spectral_channel_quality variable

8.18 Variable: ground_pixel_quality

The ground_pixel_quality provides quality indicators, by means of various flags, for each spectral channel. A more detailed explanation for the flag meanings is provided in table 67. For a ground pixel with the geolocation_error set, an error occurred during the determination of one or more of the fields in the GEODATA group. For L2 processing it is recommended to ignore or discard all ground pixels for which this geolocation_error flag is set. All other flags are provided for informational purposes only. The quality of the data for the ground pixels for which these flags are set is not affected and the data can be used for further processing.

	Variable	Storage type	Units
	ground_pixel_quality	ubyte	none
CDL	ubyte ground_pixel_quality ground_pixel_quality:long_materials and pixel_quality:valid ground_pixel_quality:valid ground_pixel_quality:coord ground_pixel_quality:flag_materials and pixel_quality:flag_materials and pixel_quality:comments around_pixel_quality:comments around_pixel_quality:	<pre>name = "ground pixel of _min = 0 ; _max = 254 ; inates = "longitude la values = OUB, 1UB, 2UB meanings = no_error, s t, geo_boundary_crossi</pre>	quality flag"; atitude"; 3, 4UB, 8UB, 16UB, 128UB; solar_eclipse, sun_glint ing, geolocation_error;

Remarks

Table 66: CDL definition ground_pixel_quality variable

Val	ue	Ma	sk	Meaning	Explanation
0x00	0	0xFF	255	no_error	No ground pixel qualification, the ground pixel can be used for further processing
0x01	1	0x01	1	solar_eclipse	The ground pixel may be affected by a solar eclipse
0x02	2	0x02	2	sun_glint_possible	The ground pixel may be subject to sun glint
0x04	4	0x04	4	descending	The ground pixel was observed by the satellite on the descending side of the orbit
0x08	8	0x08	8	night	The ground pixel was observed by the satellite on the night side of the orbit
0x10	16	0x10	16	geo_boundary_cross-ing	The ground pixel crosses a geometric boundary, such as the dateline
0x80	128	08x0	128	geolocation_error	An error occurred during the geolocation algorithm. Typically one or more of the fields in the GEODATA group will be affected by this error.

Table 67: Explanation of the flags in ground_pixel_quality variable

8.19 Variable: quality_level

The L1b variable quality_level is used to provide an overall indication of L1b data quality. Typically, to assign a quality level to a data product, *Quality Indicators (QIs)* are needed, in particular at each stage of the data processing chain - from collection and processing to delivery. A QI should provide sufficient information to allow all users to evaluate a product's suitability for their particular application. These QIs are provided to the users in the variable spectral_channel_quality (covering e.g. transient) and the variable ground_pixel_quality (covering e.g. solar eclipse). A QI is stored in a binary format, representing an on/off mode. Whenever a bit for a specific QI is set, this QI negatively influenced the determination of the quality_level.

The value for the overall quality is obtained by multiplying the quality indicators (ranging from 0 to 1) of the individual algorithms applied in the L01b processing chain. This product is then multiplied by hundred. Thus the maximum quality level is equal to 100; each processing algorithm might introduce a degradation which ultimately can result in the worst quality level equal to 0.

	Variable	Storage type	Units
	quality_level	ubyte	none
CDL	quality_level:valid_min = quality_level:valid_max = quality_level:coordinates	<pre>"qualiy level of spectra 0;</pre>	l channel";

Remarks

Table 68: CDL definition quality_level variable

8.20 Variable: measurement_quality

The measurement_quality provides quality indicators, by means of various flags, for each measurement (scanline). A more detailed explanation for the flag meanings is provided in table 70. The impact on L2 processing and the recommended handling is specified in table 70 as a class which as clarified in table 71.

	Variable	Storage type	Units
	measurement_quality	ushort	none
CDL	ushort measurement_quality measurement_quality:long_na measurement_quality:valid_r measurement_quality:valid_r measurement_quality:coordin measurement_quality:flag_va ; measurement_quality:flag_ma instability, saa, spacecrai measurement_quality:comment measurement_quality:comment	ame = "measurement quali min = 0; max = 65534; mates = "longitude latital alues = 0US, 1US, 4US, 1 eanings = no_error, proc ft_manoeuvre, irr_out_of	cude"; 16US, 32US, 256US, 4096US c_skipped, thermal f_range, sub_group;

Remarks Extended description:

- no_error: No measurement qualification
- proc_skipped: One or more processing steps (algorithms) where skipped
- thermal_instability: The instrument was outside its nominal (stable) temperature
- saa: Measurement was obtained while spacecraft was in South Atlantic Anomaly
- spacecraft_manoeuvre: Measurement was obtained during spacecraft manoeuvre
- irr_out_of_range: Measurement outside nominal elevation / azimuth range
- · sub group: Measurement was flagged as sub-group by subgroup algorithm

Note: Flag value 2 was previously used for flagging measurements for which no residual correction was applied. This flag is currently not used (i.e. always set to 0) but may be used for a different purpose in future software updates.

Table 69: CDL definition measurement_quality variable

Valu	ıe	Ма	sk	Meaning	Class	Explanation
0x0000	0	0xFFFF	65535	no_error		No measurement qualification
0x0001	1	0x0001	1	proc_skipped	E	One or more processing steps (algorithms) where skipped
0x0002	2	0x0002	2			This flag was previously used for flagging measurements for which no residual correction was applied. This flag is currently not used (i.e. always set to 0) but may be used for a different purpose in future software updates.
0x0004	4	0x0004	4	thermal_insta- bility	W	The instrument was outside its nominal (stable) temperature
0x0010	16	0x0010	16	saa	N	Measurement was obtained while spacecraft was in South Atlantic Anomaly
0x0020	32	0x0020	32	spacecraft_ma- noeuvre	W	Measurement was obtained during spacecraft manoeuvre
0x0040	64	0x0040	64	shadow_umbra	I	spacecraft is in the umbral shadow of the Earth w.r.t. the Sun
0x0080	128	0x0080	128	shadow penumbra	I	spacecraft is in the penumbral shadow of the Earth w.r.t. the Sun
0x0100	256	0x0100	256	irr_out_of range	С	Measurement outside nominal elevation / azimuth range.
0x1000	4096	0x1000	4096	sub_group	С	Measurement was flagged as subgroup by subgroup algorithm. This flag is intended for monitoring and calibration purposes.

Table 70: Explanation of the flags in measurement_quality variable

Class	Name	Impact and recommend handling for L2 processing
Е	Error	The quality of the data can be severely impacted, it is recommended to ignore / discard the data for further processing
W	Warning	The quality of the data is expected to be impacted, it is recommended to ignore / discard the data for further processing or only to use it with extreme caution
N	Notice	The quality of the data may be lower than normal, but it can still be used for further processing
I	Information	The flag serves an information purpose; the quality of the data is not impacted and can be used for further processing
С	Calibration	The flag is intended for calibration / monitoring purposes only and can be ignored for L2 processing; data can be used for further processing
		-

Table 71: Explanation of the flag criticality class

8.21 Variable: detector_row_qualification

The detector_row_qualification provides quality indicators, by means of various flags, for each (ground_) pixel related to the corresponding detector row and its read-out. These flags are mainly intended for calibration / monitoring purposes. All flags are provided for information only. The quality of the data for which these flags are set is not affected and the data can be used for further processing, i.e. for Level 2 processing, this field can be safely ignored.

	Variable	Storage type	Units
	detector_row_qualification	ushort	none
CDL	ushort detector_row_qualifi detector_row_qualification: detector_row_qualification: detector_row_qualification: detector_row_qualification: 256US, 4096US, 8192US; detector_row_qualification: uvn_dump, uvn_covered, uvn_ transistion, gen_non_illumi: detector_row_qualification: type or state";	<pre>long_name = "Detecto valid_min = 0; valid_max = 65534; flag_values = OUS, 1 flag_meanings = no_q overscan, uvn_higain nated;</pre>	US, 2US, 4US, 8US, 16US, [ualification, uvn_ror,], swir_reference, gen

Remarks Extended description:

- no_qualification: No row qualification
- uvn ror: UVN detector specific, row is read-out register (ROR)
- uvn_dump: UVN detector specific, row is read using dump gate setting
- · uvn covered: UVN detector specific, row is covered on detector
- uvn_overscan: UVN detector specific, over-scan row
- · uvn higain: UVN detector specific, row is read using high gain output
- swir reference: SWIR detector specific, row is reference line
- · Row is transition row on detector
- Row is not illuminated by spectrometer output

Table 72: CDL definition detector_row_qualification variable

8.22 Variable: detector_column_qualification

The detector_column_qualification provides quality indicators, by means of various flags, for each spectral_channel related to the corresponding detector column and its read-out. These flags are mainly intended for calibration / monitoring purposes. All flags are provided for information only. The quality of the data for which these flags are set is not affected and the data can be used for further processing, i.e. for Level 2 processing, this field can be safely ignored.

	Variable	Storage type	Units
	detector_column_qualification	ushort	none
CDL	ushort detector_column_qualidetector_column_qualification flags"; detector_column_qualification detector_column_qualification detector_column_qualification detector_column_qualification detector_column_qualification use the column_qualification use the column_qualification use the column_qualification detector_column_qualification use the column_qualification column indicating column types.	on:long_name = "Det on:valid_min = 0; on:valid_max = 6553 on:flag_values = 0U on:flag_meanings = : verscan, swir_adc0, on:comment = "Qualications."	ector column qualification 4; S, 1US, 16US, 32US, 64US, no_qualification, skipped, swir_adc1, swir_adc2, swir

Remarks Extended description:

- · no qualification: No column qualification
- skipped: Column was not read and therefore contains fill values
- uvn_odd: UVN detector specific, pixels in the column took the odd ADC path
- uvn_prepost: UVN detector specific, pixels in the column are pre- or post-scan pixels
- uvn_overscan: UVN detector specific, column is an over-scan column
- swir adc0: SWIR detector specific, pixels in the column used ADC0
- swir adc1: SWIR detector specific, pixels in the column used ADC1
- swir_adc2: SWIR detector specific, pixels in the column used ADC2
- swir_adc3: SWIR detector specific, pixels in the column used ADC3

Table 73: CDL definition detector_column_qualification variable

8.23 Variable: calibrated_wavelength

The nominal_wavelength (section 8.46) provides for each ground pixel the wavelength measured by a spectral channel and is defined by the design parameters of the instrument. The wavelength values as provided by the nominal_wavelength are based on the Calibration Key Data (CKD) which are input to the L01b processing (section 5).

During the measurements the actual measured wavelength will vary from the nominal one and a calibration step is required to correct for this effect. For radiance products this calibration is applied as part of the L2 processing, because it involves atmospheric corrections which are only available at that product level. Therefore, the calibrated_wavelength is not part of the L1b radiance product.

For the L1b irradiance products the calibrated_wavelength is available. As part of the L01b processing the spectral information obtained from the irradiance measurements is compared with a reference solar spectrum. From this comparison a calibrated set of wavelengths is derived which provides a per pixel best estimate for the wavelength actually measured by each individual spectral channel.

	Variable	Storage type	Units
	calibrated_wavelength	float	nm
CDL	float calibrated_wavelengt calibrated_wavelength:long ; calibrated_wavelength:stan calibrated_wavelength:unit calibrated_wavelength:comm pixel";	<pre>c_name = "spectral chann dard_name = "radiation_ s = "nm";</pre>	el calibrated wavelength" wavelength";
Remarks	The calibrated_wavelength p channel and is defined by the de	•	avelength measured by a spectral ment.

Table 74: CDL definition calibrated_wavelength variable

8.24 Variable: calibrated_wavelength_error

	Variable	Storage type	Units
	calibrated_wavelength_error	float	nm
CDL	float calibrated_wavelength_calibrated_wavelength_error: wavelength error"; calibrated_wavelength_error: error"; calibrated_wavelength_error: calibrated_wavelength_error: wavelength of each spectral	<pre>:long_name = "spectral :standard_name = "rad: :units = "nm" ; :comment = "Standard or</pre>	l channel calibrated iation_wavelength standard
Remark	The calibrated_wavelength promeasured by a spectral channel a	•	andard deviation on the wavelength parameters of the instrument.

 $\textbf{Table 75}: \texttt{CDL definition calibrated_wavelength_error variable}$

8.25 Variable: latitude

	Variable	Storage type	Units	
	latitude	float	degrees north	
CDL	float latitude(time,scan	line,ground_pixel);		
	latitude:long_name = "pi	xel center latitude";		
	<pre>latitude:standard_name = "latitude";</pre>			
	<pre>latitude:units = "degrees_north" ;</pre>			
	latitude:valid_min = -90	.f ;		
	<pre>latitude:valid_max = 90.</pre>	f ;		
	latitude:bounds = "latit	ude_bounds" ;		
	latitude:comment = "Lati	tude of the center of eac	h ground pixel on the	
	WGS84 reference ellipsoi	d" ;	-	

Remarks Latitude, longitude coordinates for the ground pixel center and the ground pixel corners are calculated at the WGS84 ellipsoid. In principle, the information provided in the GeodataGroup allows to calculate these coordinates at arbitrary altitudes.

Table 76: CDL definition latitude variable

8.26 Variable: longitude

	Variable	Storage type	Units
	longitude	float	degrees east
CDL	float longitude(time,sca	nline,ground_pixel);	
	longitude:long_name = "p	ixel center longitude";	
	longitude:standard_name	= "longitude" ;	
	longitude:units = "degree	es_east";	
	longitude:valid_min = -1	80.f ;	
	longitude:valid_max = 18	O.f ;	
	longitude:bounds = "long	itude_bounds" ;	
	longitude:comment = "Long	gitude of the center of ϵ	each ground pixel on the
	WGS84 reference ellipsoid	d" ;	
Remarks	Latitude, longitude coordinate	es for the ground pixel center	and the ground pixel corners are
	•	·	ion provided in the GeodataGroup
	allows to calculate these coord	dinates at arbitrary altitudes.	

Table 77: CDL definition longitude variable

8.27 Variable: latitude_bounds

The four corner points of the ground pixels are calculated as an interpolation between the centre coordinates (longitude, latitude) of adjacent pixels and lines. The variable latitude_bounds provides the latitude value of these corner points.

	Variable	Storage type	Units
	latitude_bounds	float	degrees north
CDL	<pre>float latitude_bounds(time latitude_bounds:units = "d latitude_bounds:comment = pixel.";</pre>	egrees_north";	
Remarks	metadata, it is not necessary to pright-handed coordinate system latitude surface seen from above	provide it with attributes such , the ordering of the bounds e.	o be part of a coordinate variable's as long_name and units. Using as is anti-clockwise on the longituder and the ground pixel corners are

calculated at the WGS84 ellipsoid. In principle, the information provided in the GeodataGroup allows to calculate these coordinates at arbitrary altitudes.

Table 78: CDL definition latitude_bounds variable

8.28 Variable: longitude_bounds

The four corner points of the ground pixels are calculated as an interpolation between the centre coordinates (longitude, latitude) of adjacent pixels and lines. The variable longitude_bounds provides the longitude value of these corner points.

	Variable	Storage type	Units		
	longitude_bounds	float	degrees east		
CDL	<pre>float longitude_bounds(time,scanline,ground_pixel,ncorner) ; longitude_bounds:units = "degrees_east" ; longitude_bounds:comment = "The four longitude boundaries of each ground pixel." ;</pre>				
Remarks	metadata, it is not necessary to	provide it with attributes such n, the ordering of the bounds	be part of a coordinate variable's as long_name and units. Using a is anti-clockwise on the longitude-		

Latitude, longitude coordinates for the ground pixel center and the ground pixel corners are calculated at the WGS84 ellipsoid. In principle, the information provided in the GeodataGroup allows to calculate these coordinates at arbitrary altitudes.

Table 79: CDL definition longitude_bounds variable

8.29 Variable: solar_zenith_angle

	Variable	Storage type	Units
	solar_zenith_angle	float	degree
CDL	float solar_zenith_angle(t solar_zenith_angle:long_na solar_zenith_angle:standar solar_zenith_angle:units = solar_zenith_angle:valid_n solar_zenith_angle:valid_n solar_zenith_angle:coordir solar_zenith_angle:comment location on the reference	<pre>mme = "solar zenith angl rd_name = "solar_zenith_ = "degree" ; nin = 0.f ; nax = 180.f ; nates = "longitude latit = "Solar zenith angle</pre>	e"; angle"; ude"; at the ground pixel

Remarks

 $\textbf{Table 80} : \texttt{CDL definition solar_zenith_angle variable}$

8.30 Variable: solar_elevation_angle

	Variable	Storage type	Units		
	solar_elevation_angle	float	degree		
CDL	<pre>float solar_elevation_angle(time,scanline) ;</pre>				
	<pre>solar_elevation_angle:long_name = "solar elevation angle" ;</pre>				
	solar_elevation_angle:units = "degree";				
	solar_elevation_angle:valid_min = -90.f ;				
	<pre>solar_elevation_angle:valid_max = +90.f ;</pre>				
	solar_elevation_angle:comment = "Solar elevation angle measured from the				
	Sun port on instrument. Angle is measured from the YZ-plane towards the				
	X-axis (=nominal Sun LOS) of the Sun Port reference frame.";				

Remarks This variable is only present in the irradiance calibration product

Table 81: CDL definition solar_elevation_angle variable

8.31 Variable: solar_azimuth_angle

Level-2 data processors need information on the lines of sight from the ground pixel position to the spacecraft and to the Sun, in the topocentric reference frame. These are defined by the solar azimuth ϕ_0 and zenith θ_0 angles for the incident sunlight, and spacecraft azimuth ϕ and zenith θ angles for the scattered sunlight With these angles the level-2 data processors can for instance determine the scattering angle Θ . For a complete description see the section on Geometrical algorithms" in [RD10].

	Variable	Storage type	Units
	solar_azimuth_angle	float	degree
CDL	float solar_azimuth_angle; solar_azimuth_angle:long_r solar_azimuth_angle:standa solar_azimuth_angle:units solar_azimuth_angle:valid solar_azimuth_angle:coord solar_azimuth_angle:commer location on the reference North (East = +90, South	name = "solar azimuth ang ard_name = "solar_azimuth = "degree" ; min = -180.f ; max = 180.f ; inates = "longitude lation at = "Solar azimuth angle ellipsoid. Angle is mea	gle"; h_angle"; tude"; e at the ground pixel

Remarks

Table 82: CDL definition solar_azimuth_angle variable

8.32 Variable: viewing_zenith_angle

	Variable	Storage type	Units
	viewing_zenith_angle	float	degree
CDL	float viewing_zenith_angle viewing_zenith_angle:long_ viewing_zenith_angle:stand viewing_zenith_angle:units viewing_zenith_angle:valid viewing_zenith_angle:coord viewing_zenith_angle:comme pixel location on the refe vertical.";	<pre>name = "viewing zenith a lard_name = "platform_zen lard_name = "platform_zen lard_name = "largere"; larder = "longitude late larder = "Zenith angle of the</pre>	angle"; nith_angle"; itude"; he satellite at the ground

Remarks

Table 83: CDL definition viewing_zenith_angle variable

8.33 Variable: viewing_azimuth_angle

	Variable	Storage type	Units
	viewing_azimuth_angle	float	degree
CDL	float viewing_azimuth_angl viewing_azimuth_angle:long viewing_azimuth_angle:stan viewing_azimuth_angle:unit viewing_azimuth_angle:vali viewing_azimuth_angle:coor viewing_azimuth_angle:coor viewing_azimuth_angle:comm ground pixel location on t clockwise from the North (<pre>mame = "viewing azimut dard_name = "platform_a s = "degree"; d_min = -180.f; d_max = 180.f; dinates = "longitude la ent = "Azimuth angle of he reference ellipsoid</pre>	th angle"; azimuth_angle"; atitude"; f the satellite at the . Angle is measured

Remarks

Table 84: CDL definition viewing_azimuth_angle variable

8.34 Variable: satellite_latitude

	Variable	Storage type	Units		
	satellite_latitude	float	degrees north		
CDL	float satellite_latitude(time, scanline);			
	<pre>satellite_latitude:long_name = "sub-satellite latitude" ;</pre>				
	satellite_latitude:units	= "degrees_north" ;			
	satellite_latitude:valid_	min = -90.f ;			
	satellite_latitude:valid_	max = 90.f ;			
	satellite_latitude:commen	t = "Latitude of the sp	acecraft sub-satellite		
	point on the WGS84 refere	nce ellipsoid";			

Remarks

Table 85: CDL definition satellite_latitude variable

8.35 Variable: satellite_longitude

	Variable	Storage type	Units		
	satellite_longitude	float	degrees east		
CDL	<pre>float satellite_longitude(time,scanline) ;</pre>				
	<pre>satellite_longitude:units = "degrees_east" ;</pre>				
	satellite_longitude:valid	$_{min} = -180.f$;			
	satellite_longitude:valid	$_{\text{max}} = 180.f$;			
	satellite_longitude:commen	nt = "Longitude of the s	spacecraft sub-satellite		
	point on the WGS84 referen	nce ellipsoid" ;			

Table 86: CDL definition satellite_longitude variable

8.36 Variable: satellite_altitude

	Variable	Storage type	Units
	satellite_altitude	float	m
CDL	float satellite_altitude(time,scanline);	
	satellite_altitude:long_n	ame = "satellite altitude	e" ;
	satellite_altitude:units	= "m" ;	
	satellite_altitude:valid_	min = 700000.f ;	
	satellite_altitude:valid_	max = 900000.f ;	
	satellite_altitude:commen	t = "The altitude of the	spacecraft relative to
	the WGS84 reference ellip	soid" :	-

Remarks

Table 87: CDL definition satellite_altitude variable

8.37 Variable: satellite_orbit_phase

The orbit phase is defined as $1/(2\pi)$ times the angle in radians traversed by the spacecraft since spacecraft midnight as seen from the center of the Earth. Spacecraft midnight is the point on the night side of the Earth where the spacecraft crosses the orbital plane of the Earth about the Sun. This makes the orbit phase a quantity that runs from 0 to 1, while the spacecraft moves between each spacecraft midnight.

	Variable	Storage type	Units
	satellite_orbit_phase	float	none
CDL	float satellite_orbit_phase satellite_orbit_phase:long satellite_orbit_phase:unit satellite_orbit_phase:valisatellite_orbit_phase:valisatellite_orbit_phase:commeasurement in the orbit"	<pre>g_name = "fractional sat cs = "1" ; .d_min = -0.02f ; .d_max = 1.02f ; nent = "Relative offset</pre>	•
Remarks	CF-Convention: The conforming "1".	unit for quantities that represe	ent fractions, or parts of a whole, is

Table 88: CDL definition satellite_orbit_phase variable

8.38 Variable: satellite_shadow_fraction

The shadow fraction is defined as a decimal number between 0 and 4, from S/C midnight (0) to noon (4). The smaller the number, the darker the shadow at the location of the S/C as cast by the Earth onto the S/C. The larger the number, the more the S/C is situated in direct illumination of full sunlight near noon. The shadow part runs from 0-2, while the illuminated part is between 2-4. The umbral shadow runs from 0-1, the penumbral shadow from 1-2, where the S/C is thus 'behind' the Earth w.r.t. the Sun. Then from 2-3 the S/C is in direct sunlight, but the S/C is still on the shadow hemisphere, while from 3-4 the S/C is illuminated on the illuminated side hemisphere w.r.t. the Sun.

	Variable	Storage type	Units
	satellite_shadow_fraction	float	none
CDL	float satellite_shadow_frac satellite_shadow_fraction:1 satellite_shadow_fraction:v satellite_shadow_fraction:v satellite_shadow_fraction:v satellite_shadow_fraction:c [0,4], umbral shadow [0,1], [2,3], no shadow sun-side [<pre>ong_name = "fractional nits = "1" ; alid_min = -0.02f ; alid_max = 4.02f ; omment = "Shadow fract penumbral shadow [1,2]</pre>	tion from S/C midnight-noon
Remarks	CF-Convention: The conforming us "1".	nit for quantities that repres	ent fractions, or parts of a whole, is

Table 89: CDL definition satellite_shadow_fraction variable

8.39 Variable: earth_sun_distance

	Variable	Storage type	Units		
	earth_sun_distance	float	astronomical unit		
CDL	<pre>float earth_sun_distance(time) ;</pre>				
	earth_sun_distance:long_na	ame = "distance between	the earth and the sun" ;		
	earth_sun_distance:units =	= "astronomical_unit" ;			
	earth_sun_distance:valid_n	nin = 0.98f ;			
	earth_sun_distance:valid_n	$\max = 1.02f$;			
	earth_sun_distance:comment	z = "1 au equals 149.59	97.870.700 meters":		

Remarks

Table 90: CDL definition earth_sun_distance variable

8.40 Variable: processing_class

Different operating modes of the system and the derived L01B products are described by three parameters: the Processing Class, the Instrument Configuration ID (IcID) and Instrument Configuration Version (IcVersion). The concept for these three parameters is taken from the OMI mission:

- The Processing Class defines the type of measurement at a very high level. Contrary to the IcIDs, the set of processing classes is (fairly) static. The advantage of this, is that it is possible to create new IcIDs and as long as these can use an existing processing class, it is not required to update the L01b to support that IcID. Examples of processing classes are Earth_radiance, Sun_irradiance, DLED, WLS, Dark, Background, ... For a complete overview of valid processing classes see Appendix B.
- The Instrument Configuration ID defines the type of measurement and its purposes. The number of Instrument Configuration IDs will increase over the mission as new types of measurements are created / used;
- The Instrument Configuration Version allows to differentiate between multiple versions for a specific IcID.

Each Processing Class and each IcID corresponds to a number. The numbers for Processing Class, IcID and IcVersion are set in the instrument by the instrument operations team for each measurement.

	Variable	Storage type	Units
	processing_class	short	none
CDL	short processing_class(tiprocessing_class:long_namprocessing_class:valid_miprocessing_class:valid_maprocessing_class:commentmeasurement at a very higonly a limited, fixed set of processing classes are Background,;";	<pre>e = "processing class"; n = 0; x = 255; = "The processing_class of h level. Contrary to Instoferation of processing classes is</pre>	strument Configuration IDs s identified. Examples

Remarks For a complete overview of valid processing classes see Appendix B.

Table 91: CDL definition processing_class variable

8.41 Variable: instrument_configuration

The TROPOMI instrument has many configurable parameters. For example, the exposure time, co-addition period, gains and (for UVN-DEMs) the binning factors can be varied. As a result, the instrument can be operated in many different modes or configurations. Each combination of instrument settings is referred to as instrument configuration and is identified by an instrument configuration ID, a number in the range [1,65535]. This instrument configuration ID, or IcID, is primarily used by the instrument, where it identifies an entry in the instrument configuration tables. On ground, the IcID is used to determine the intended purpose of a measurement and is used in the L01b data processing to determine the processing path.

For an IcID, it is possible to have multiple versions, identified by the instrument configuration version or IcVersion. The combination of IcID and IcVersion uniquely identifies the set of configuration settings of the instrument. At a given time, only one IcVersion of an IcID can be active within the instrument. The IcVersion allows to have multiple versions of a measurement with the same purpose, but with different settings. As a result of, for example, instrument degradation, it may be required to change the settings for a measurement. In that case, it is not necessary to create a new IcID, instead the same IcID can be using with a new IcVersion.

	Variable	Storage type	Units		
	instrument_configuration	n/a	none		
CDL	types: instrument_configur	ration_type {			
	<pre>int icid ;</pre>				
	<pre>short ic_version ;</pre>				
	} ;				
	<pre>instrument_configuration_type instrument_configuration(time,scanline);</pre>				
	instrument_configuration:lo	ong_name = "instrument o	configuration, IcID and		
	<pre>IcVersion" ;</pre>				
	instrument_configuration:co	mment = "The Instrument	Configuration ID		
	defines the type of measure	ement and its purposes.	The number of		
	Instrument Configuration II	s will increase over th	ne mission as new types		
	of measurements are created	l / used; The Instrument	Configuration Version		
	allows to differentiate bet	woon multiple wordiens	for a specific TaTD ! .		

Remarks

Table 92: CDL definition instrument_configuration variable

8.42 Variable: instrument_settings

The instrument_settings variable contains all the instrument settings that are relevant for data processing. Due to the UVN and SWIR modules having different instrument configuration parameters, instrument_settings is defined differently for UVN and SWIR products. The instrument settings are given for each

Instrument Configuration ID and version contained in the product.

8.42.1 UVN product: instrument_settings

	Variable	Storage type	Units
	instrument_settings	instrument_settings_type	none
CDL	types:		
	compound instrument_setting	gs_type {	
	int ic_id ;		
	<pre>short ic_version ;</pre>		
	<pre>short ic_set ;</pre>		
	<pre>short ic_idx ;</pre>		
	<pre>short processing_class ;</pre>		
	float master_cycle_period :	;	
	<pre>float coaddition_period ;</pre>		
	<pre>float exposure_time ;</pre>		
	<pre>float msmt_mcp_ft_offset ;</pre>		
	float msmt_ft_msmt_start_of	ffset ;	
	<pre>float msmt_duration ;</pre>		
	<pre>float flush_duration ;</pre>		
	<pre>short nr_coadditions ;</pre>		
	<pre>short cds_gain ;</pre>		
	<pre>float pga_gain ;</pre>		
	<pre>float dac_offset ;</pre>		
	<pre>int master_cycle_period_us</pre>	;	
	<pre>int coaddition_period_us ;</pre>		
	<pre>int exposure_time_us ;</pre>		
	<pre>int exposure_period_us ;</pre>		
	<pre>short small_pixel_column ;</pre>		
	<pre>short stop_column_read ;</pre>		
	<pre>short start_column_coad ;</pre>		
	<pre>short stop_column_coad ;</pre>		
	<pre>short pga_gain_code ;</pre>		
	<pre>short dac_offset_code ;</pre>		
	<pre>ubyte clock_mode ;</pre>		
	ubyte clipping;		
	<pre>}; // instrument_settings_t</pre>	type	
	variables:		
	instrument_settings_type in	<pre>nstrument_settings(nsettings);</pre>	

Table 93: CDL definition instrument_settings variable

field	type	unit	description
ic_id	int	1	Instrument configuration ID; number that uniquely speci- fies a type of measurement. The combination of the icid and icversion uniquely identifies a specific instrument configuration
ic_version	short	1	Instrument configuration version; version number for the instrument configuration ID. The combination of the icid and icversion uniquely identifies a specific instrument configuration
ic_set	short	1	Instrument configuration set of which the instrument configuration ID is part.

field	type	unit	description
ic_idx	short	1	Index of the instrument configuration ID in the instrument configuration set
processing_class	short	1	The processing_class defines the type of measurement at a very high level. Contrary to Instrument Configuration IDs, only a limited, fixed set of processing classes is identified. Examples of processing classes are Earth_radiance, Sun_irradiance, CLED, WLS, Dark, Background,
master_cycle_period	float	S	Measurement master cycle period in seconds; must be a multiple of the coaddition period.
coaddition_period	float	S	Co-addition period in seconds; the time interval covered by all the co-additions in the measurement. In case no flushing is used, this is equal to the number of co-additions multiplied by the exposure time. In case flushing is used, this is equal to the number of co-additions multiplied by the sum of the exposure time and the flushing time
exposure_time	float	S	The exposure time in seconds for a single (unco-added) frame.
msmt_mcp_ft_offset	float	S	Offset between Master clock pulse and frame trigger starting measurement
msmt_ft_msmt_start_offset	float	S	Offset between FT and start of exposure
msmt_duration	float	S	Delta between start of first exposure in a measurement and end of last exposure in a measurement
flush_duration	float	s	Duration of the flush period of a measurement
nr_coadditions	short	1	The number of co-additions.
cds_gain	short	1	The CDS V/V gain, based on design parameters, either 1x or 2x.
pga_gain	float	1	The AFE PGA V/V gain, based on design parameters.
dac_offset	float	V	The AFE DAC offset in V, based on design parameters.
master_cycle_period_us	int	us	Measurement master cycle period in microseconds; must be a multiple of the coaddition period. Note: Contrary to the master_cycle_period, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable
coaddition_period_us	int	us	Co-addition period in microseconds; the time interval covered by all the co-additions in the measurement. In case no flushing is used, this is equal to the number of co-additions multiplied by the exposure time. In case flushing is used, this is equal to the number of co-additions multiplied by the sum of the exposure time and the flushing time. Note: Contrary to the coaddition_period, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable
exposure_time_us	int	us	The exposure time in microseconds for a single (unco- added) frame. Note: Contrary to the exposure_time, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable.
exposure_period_us	int	us	The interval between two consecutive exposures
small_pixel_column	short	1	Setting (code) for the AFE PGA
stop_column_read	short	1	Setting (code) for the AFE DAC

field	type	unit	description
start_column_coad	short	1	Column for which the data are downlinked for all coaddition
stop_column_coad	short	1	The number of columns from the detector that are read- out
pga_gain_code	short	1	First column that is being co-added
dac_offset_code	short	1	Lastst column that is being co-added
clock_mode	ubyte	1	CCD Clocking mode; 0 = normal, 1 = reverse, 2 = static, 3 = CTE, 4 = invalid
clipping	ubyte	1	Data clipping position

Table 94: Fields in the instrument_settings variable.

8.42.2 SWIR product: instrument_settings

	Variable	Storage type	Units				
	instrument_settings	instrument_settings_type	none				
CDL	types:						
	<pre>compound instrument_settings_type {</pre>						
	<pre>int ic_id ;</pre>						
	<pre>short ic_version ;</pre>						
	<pre>short ic_set ;</pre>						
	<pre>short ic_idx ;</pre>						
	<pre>short processing_class ;</pre>						
	<pre>float master_cycle_period ;</pre>						
	float coaddition_period ;						
	<pre>float exposure_time ;</pre>						
	<pre>float msmt_mcp_ft_offset ;</pre>						
	<pre>float msmt_ft_msmt_start_offs</pre>	et ;					
	<pre>float msmt_duration ;</pre>						
	<pre>float reset_time ;</pre>						
	<pre>short nr_coadditions ;</pre>						
	<pre>int master_cycle_period_us ;</pre>						
	<pre>int coaddition_period_us ;</pre>						
	<pre>int exposure_time_us ;</pre>						
	<pre>int exposure_period_us ;</pre>						
	<pre>short small_pixel_column ;</pre>						
	<pre>short stop_column_read ;</pre>						
	<pre>short start_column_coad ;</pre>						
	<pre>short stop_column_coad ;</pre>						
	<pre>uint int_hold ;</pre>						
	<pre>ushort int_delay ;</pre>						
	ubyte clipping;						
	<pre>}; // instrument_settings_type</pre>	e					
	variables:						
	<pre>instrument_settings_type inst</pre>	<pre>rument_settings(nsettings) ;</pre>					

Table 95: CDL definition instrument_settings variable

field	type	unit	description
ic_id	int	1	Instrument configuration ID; number that uniquely speci- fies a type of measurement. The combination of the icid and icversion uniquely identifies a specific instrument configuration
ic_version	short	1	Instrument configuration version; version number for the instrument configuration ID. The combination of the icid and icversion uniquely identifies a specific instrument configuration
ic_set	short	1	Instrument configuration set of which the instrument configuration ID is part.
ic_idx	short	1	Index of the instrument configuration ID in the instrument configuration set
processing_class	short	1	The processing_class defines the type of measurement at a very high level. Contrary to Instrument Configuration IDs, only a limited, fixed set of processing classes is identified. Examples of processing classes are Earth_radiance, Sun_irradiance, CLED, WLS, Dark, Background,
master_cycle_period	float	S	Measurement master cycle period in seconds; must be a multiple of the coaddition period.
coaddition_period	float	S	Co-addition period in seconds; the time interval covered by all the co-additions in the measurement. In case no flushing is used, this is equal to the number of co-additions multiplied by the exposure time. In case flushing is used, this is equal to the number of co-additions multiplied by the sum of the exposure time and the flushing time
exposure_time	float	S	The exposure time in seconds for a single (unco-added) frame.
msmt_mcp_ft_offset	float	S	Offset between Master clock pulse and frame trigger starting measurement
msmt_ft_msmt_start_offset	float	S	Offset between FT and start of measurement
msmt_duration	float	S	Delta between start of first exposure in a measurement and end of last exposure in a measurement
reset_time	float	S	Reset time between exposures
nr_coadditions	short	1	The number of co-additions.
master_cycle_period_us	int	us	Measurement master cycle period in microseconds; must be a multiple of the coaddition period. Note: Contrary to the master_cycle_period, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable
coaddition_period_us	int	us	Co-addition period in microseconds; the time interval covered by all the co-additions in the measurement. In case no flushing is used, this is equal to the number of co-additions multiplied by the exposure time. In case flushing is used, this is equal to the number of co-additions multiplied by the sum of the exposure time and the flushing time. Note: Contrary to the coaddition_period, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable

field	type	unit	description
exposure_time_us	int	us	The exposure time in microseconds for a single (uncoadded) frame. Note: Contrary to the exposure_time, which is stored as a float, this field is stored as a long and therefore exactly representable and comparable.
exposure_period_us	int	us	The interval between two consecutive exposures
small_pixel_column	short	1	Column for which the data are downlinked for all coaddition
stop_column_read	short	1	The number of columns from the detector that are read- out
start_column_coad	short	1	First column that is being co-added
stop_column_coad	short	1	Latest column that is being co-added
int_hold	uint	1	INT_HOLD code
int_delay	ushort	1	INT_DELAY code
clipping	ubyte	1	Data clipping position

Table 96: Fields in the instrument_settings variable.

8.43 Variable: binning_table

	Variable	Storage type	Units			
	binning_table	binning_table_type	none			
CDL	types:					
	compound binning_table_type {					
	short size ;					
	<pre>short binning_factor ;</pre>					
	short gain ;					
	<pre>short detector_start_row ;</pre>					
	<pre>short detector_stop_row ;</pre>					
	<pre>short measurement_start_row ;</pre>					
	<pre>short measurement_stop_row ;</pre>					
	<pre>}; // binning_table_type</pre>					
	variables:					
	binning_table_type binning	_table(nsettings, nbinningr	egions);			

Table 97: CDL definition binning_table variable

field	type	unit	description
size	short	1	Number of rows in the area before binning / read-out
binning_factor	short	1	Binning factor for the area; 0 if rows are skipped
gain	short	1	CCD output gain for the area $(0 = dump, 1 = 1x, 2 = 2x)$
detector_start_row	short	1	Start row of the binning area on the detector
detector_stop_row	short	1	Stop row of the binning area on the detector; the stop row is exclusive (i.e. up to, but not including)
measurement_start_row	short	1	Start row of the binning area in the measurement. Set to -1 in case the area is skipped. Reflects the rows that are actually written to the output, in case a subset of the data is written.

field	type	unit	description
measurement_stop_row	short	1	Stop row of the binning area in the measurement; the stop row is exclusive (i.e. up to, but not including). Set to -1 in case the area is skipped. Reflects the rows that are actually written to the output, in case a subset of the data is written.

Table 98: Fields in the binning_table variable.

8.44 Variable: housekeeping_data

housekeeping_data types: compound housekeeping_data_ty float temp_det1; float temp_det2; float temp_det3; float temp_det4; float data_offset_s; float temp_tss_up_neg_x; float temp_tss_up_neg_y; float temp_tss_up_pos_x; float temp_tss_up_pos_y; float temp_tss_up_mid; float temp_tss_low_mid;	housekeeping_data_type ype {	none							
<pre>compound housekeeping_data_ty float temp_det1 ; float temp_det2 ; float temp_det3 ; float temp_det4 ; float data_offset_s ; float temp_tss_up_neg_x ; float temp_tss_up_neg_y ; float temp_tss_up_pos_x ; float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>	ype {								
<pre>float temp_det1 ; float temp_det2 ; float temp_det3 ; float temp_det4 ; float data_offset_s ; float temp_tss_up_neg_x ; float temp_tss_up_neg_y ; float temp_tss_up_pos_x ; float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>	ype {								
<pre>float temp_det2; float temp_det3; float temp_det4; float data_offset_s; float temp_tss_up_neg_x; float temp_tss_up_neg_y; float temp_tss_up_pos_x; float temp_tss_up_pos_y; float temp_tss_up_mid;</pre>									
<pre>float temp_det3; float temp_det4; float data_offset_s; float temp_tss_up_neg_x; float temp_tss_up_neg_y; float temp_tss_up_pos_x; float temp_tss_up_pos_y; float temp_tss_up_mid;</pre>									
<pre>float temp_det4; float data_offset_s; float temp_tss_up_neg_x; float temp_tss_up_neg_y; float temp_tss_up_pos_x; float temp_tss_up_pos_y; float temp_tss_up_mid;</pre>									
<pre>float data_offset_s; float temp_tss_up_neg_x; float temp_tss_up_neg_y; float temp_tss_up_pos_x; float temp_tss_up_pos_y; float temp_tss_up_mid;</pre>									
<pre>float temp_tss_up_neg_x ; float temp_tss_up_neg_y ; float temp_tss_up_pos_x ; float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>									
<pre>float temp_tss_up_neg_y ; float temp_tss_up_pos_x ; float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>									
<pre>float temp_tss_up_pos_x ; float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>									
<pre>float temp_tss_up_pos_y ; float temp_tss_up_mid ;</pre>									
<pre>float temp_tss_up_mid ;</pre>									
= = =									
<pre>float temp_tss_low_mid ;</pre>									
<pre>float temp_low_uvn_obm ;</pre>									
-									
-	;								
	;								
-									
									
ubyte difm_status ;									
=									
•									
=									
-									
·									
-									
ubyte sls4_status ;									
•									
-									
<pre>}; // housekeeping_data_type</pre>									
variables:									
	float temp_low_uvn_obm; float temp_up_uvn_obm; float temp_obm_swir; float temp_obm_solar_baffle; float temp_obm_solar_baffle; float temp_obm_swir_grating; float temp_obm_swir_if; float temp_obm_swir_if; float temp_pelt_cu_sls1; float temp_pelt_cu_sls2; float temp_pelt_cu_sls3; float temp_pelt_cu_sls4; float temp_pelt_cu_sls5; ubyte difm_status; ubyte fmm_status; ubyte det1_led_status; ubyte det3_led_status; ubyte det4_led_status; ubyte sls1_status; ubyte sls2_status; ubyte sls4_status; ubyte sls4_status; ubyte sls5_status; ubyte wls_status; ubyte filler_char1; float swir_vdet_bias; }; // housekeeping_data_type variables:	<pre>float temp_low_uvn_obm ; float temp_up_uvn_obm ; float temp_obm_swir ; float temp_obm_solar_baffle ; float temp_cu_sls_stim ; float temp_obm_swir_grating ; float temp_obm_swir_if ; float temp_pelt_cu_sls1 ; float temp_pelt_cu_sls2 ; float temp_pelt_cu_sls3 ; float temp_pelt_cu_sls4 ; float temp_pelt_cu_sls5 ; ubyte difm_status ; ubyte fmm_status ; ubyte det1_led_status ; ubyte det2_led_status ; ubyte det4_led_status ; ubyte det4_led_status ; ubyte sls1_status ; ubyte sls2_status ; ubyte sls4_status ; ubyte sls5_status ; ubyte sls5_status ; ubyte sls5_status ; ubyte sls5_status ; ubyte filler_char1 ; float swir_vdet_bias ; }; // housekeeping_data_type</pre>							

 Table 99: CDL definition housekeeping_data variable

field	type	unit	description	
temp_det1	float	K	Temperature of the detector 1	
temp_det2	float	K	Temperature of the detector 2	

field	type	unit	description
temp_det3	float	K	Temperature of the detector 3
temp_det4	float	K	Temperature of the detector 4
data_offset_s	float	s	Offset time to measurement time of housekeeping data
temp_tss_up_neg_x	float	K	TSS Upper surface Mid -X side temperature
temp_tss_up_neg_y	float	K	TSS Upper surface Mid -Y side temperature
temp_tss_up_pos_x	float	K	TSS Upper surface Mid +X side temperature
temp_tss_up_pos_y	float	K	TSS Upper surface Mid +Y side temperature
temp_tss_up_mid	float	K	TSS Upper surface middle temperature
temp_tss_low_mid	float	K	TSS lower surface middle temperature
temp_low_uvn_obm	float	K	Temperature of the lower UVN OBM
temp_up_uvn_obm	float	K	Temperature of the upper UVN OBM
temp_obm_swir	float	K	Temperature of the SWIR OBM
temp_obm_solar_baffle	float	K	Temperature of the OBM Solar baffle
temp_cu_sls_stim	float	K	Temperature of the OBM CU SLS stimuli
temp_obm_swir_grating	float	K	Temperature of the SWIR grating
temp_obm_swir_if	float	K	Temperature of the OBM at SWIR interface
temp_pelt_cu_sls1	float	K	Temperature of the Peltier Control Calibration unit for SLS1
temp_pelt_cu_sls2	float	K	Temperature of the Peltier Control Calibration unit for SLS2
temp_pelt_cu_sls3	float	K	Temperature of the Peltier Control Calibration unit for SLS3
temp_pelt_cu_sls4	float	K	Temperature of the Peltier Control Calibration unit for SLS4
temp_pelt_cu_sls5	float	K	Temperature of the Peltier Control Calibration unit for SLS5
difm_status	ubyte	1	DIFM status; 0 UNKNOWN, 1 WLS, CLED_QVD2 2, SUN_QVD2 3, SLS 4, CLED_QVD2 5, SUN_QVD1 6, OSCILATING 7
fmm_status	ubyte	1	FMM status; UNKNOWN 0, NADIR_VIEW 1, CALIBRATION 2
det1_led_status	ubyte	1	Led of detector 1 on (1) or off (0)
det2_led_status	ubyte	1	Led of detector 2 on (1) or off (0)
det3_led_status	ubyte	1	Led of detector 3 on (1) or off (0)
det4_led_status	ubyte	1	Led of detector 1 on (1) or off (0)
common_led_status	ubyte	1	Common led on (1) or off (0)
sls1_status	ubyte	1	Led SLS1 on (1) or off (0)
sls2_status	ubyte	1	Led SLS2 on (1) or off (0)
sls3_status	ubyte	1	Led SLS3 on (1) or off (0)
sls4_status	ubyte	1	Led SLS4 on (1) or off (0)
sls5_status	ubyte	1	Led SLS5 on (1) or off (0)
wls_status	ubyte	1	Led WLS on (1) or off (0)
filler_char1	ubyte	1	Filler byte for alignment
swir_vdet_bias	float	V	Bias voltage of SWIR detector

Table 100: Fields in the housekeeping_data variable.

8.45 Variable: measurement_to_detector_row_table in engineering product

	Variable	Storage type	Units
1	measurement_to_detector_row_table	msmt_to_det_row_table_type	none
CDL	<pre>types: compound msmt_to_det_row_tabl short det_start_row ;</pre>	e_type {	
	<pre>short det_end_row ; }; // msmt_to_det_row_table_t; variables: msmt_to_det_row_table_type me ground_pixel) ;</pre>	ype asurement_to_detector_row_table	e(time, scanline,

Remarks

Table 101: CDL definition measurement_to_detector_row_table variable

field	type	unit	description
det_start_row	short	1	Detector start row for measurement row
det_end_row	short	1	Detector end row for measurement row

Table 102: Fields in the measurement_to_detector_row_table variable.

8.46 Variable: nominal_wavelength

The nominal_wavelength provides for each ground pixel the wavelength measured by a spectral channel and is defined by the design parameters of the instrument. The wavelength values as provided by the nominal_wavelength are based on the Calibration Key Data (CKD) which are input to the L01b processing (section 5). See also the discussion on calibrated_wavelength in section 8.23.

	Variable	Storage type	Units
	nominal_wavelength	float	nm
CDL	float nominal_wavelength(nominal_wavelength:long_n nominal_wavelength:standa nominal_wavelength:units nominal_wavelength:commen cross track pixel as a fu	<pre>ame = "spectral channel r rd_name = "radiation_wave = "nm" ; t = "The nominal spectral</pre>	nominal wavelength"; elength"; L wavelength for each

nemarks in

The nominal_wavelength provides for each pixel the wavelength measured by a spectral channel and is defined by the design parameters of the instrument.

The values mentioned for valid_min and valid_max apply to the Band1 product and serve as an example. The valid values for all products are listed in Table 1 in section 4.2

 $\textbf{Table 103}: \texttt{CDL definition nominal_wavelength} \ variable$

8.47 Variable: nominal_wavelength_error

	Variable	Storage type	Units
	nominal_wavelength_error	float	nm
CDL	float nominal_wavelength_er nominal_wavelength_error:lo error"; nominal_wavelength_error:st error"; nominal_wavelength_error:un nominal_wavelength_error:co for each cross track pixel	<pre>ng_name = "spectral c andard_name = "radiat its = "nm" ; mment = "The nominal</pre>	hannel nominal wavelength ion_wavelength standard spectral wavelength error
Remarks	measured by a spectral channel a	and is defined by the design	apply to the Band1 product and

Table 104: CDL definition nominal_wavelength_error variable

8.48 Variable: sample_cycle

The concept of "sample cycle" has been introduced to allow for comparison of the different radiance products (i.e. bands). In principle, the eight products all can have different co-addition periods, i.e. the time period in which independent measurements are added in order to reduce the data rate as well as to increase the signal—to-noise ratio. The number of independent measurements is depending on the integration time which differs for each band, but is fixed for a specific instrument configuration.

For all bands measurements start at the same time but because the co-addition time may be different the scanlines may have a different time stamp. However, after a period of length sample_cycle_length the measurement cycle is repeated and again the measurements start at the same time. Thus, within the sample_cycle a fixed number (for a certain instrument configuration) of scanlines is collected, which differ for each radiance product. However, the sample_cycle index is the same for all these products.

	Variable	Storage type	Units
	sample_cycle	int	none
CDL	<pre>int sample_cycle(time,sca sample_cycle:long_name = sample_cycle:units = "1" sample_cycle:comment = "s scanline; index starts at</pre>	<pre>"sample cycle"; ; sample_cycle provides a sample_cycle</pre>	ample_cycle index for each
Remarks	One unique set of sample_cy originating from the same orbit	• •	Il radiance products (i.e. bands)

Table 105: CDL definition sample_cycle variable

8.49 Variable: sample_cycle_length

	Variable	Storage type	Units	
	sample_cycle_length	int	ms	
CDL	<pre>int sample_cycle_length(ti sample_cycle_length:long_r sample_cycle_length:units sample_cycle_length:commer</pre>	name = "length of sample" = "ms" ;	•	

Remarks

Table 106: CDL definition sample_cycle_length variable

8.50 Variable: monitor_straylight_observed

	Variable	Storage type	Units
	monitor_straylight_observed	float	electron.s-1
CDL	; monitor_straylight_observed:	units = "electron. comment = "Observe	d stray light from the stray

Remarks

Table 107: CDL definition monitor_straylight_observed variable

8.51 Variable: offset_readout_register

	Variable	Storage type	Units
	offset_readout_register	n/a	none
CDL	types: datapoint_type {		
	double value ;		
	double error ;		
	}		
	offset_readout_register(times	ne,scanline,ccd_gain,par	rity) ;
	offset_readout_register:com	•	•
	calculated from the detector's read-out register";		

Remarks Only available for UVN bands

Table 108: CDL definition offset_readout_register variable

8.52 Variable: irradiance_avg

	Variable	Storage type	Units
	irradiance_avg	float	$mol.s^{-1}.m^{-2}.nm^{-1}$
CDL	<pre>float irradiance_avg(time,pixel,spectral_channel) ; irradiance_avg:units = "mol.s-1.m-2.nm-1" ;</pre>		
	<pre>irradiance_avg:ancillary_variables = "irradiance_avg_noise irradiance_avg error";</pre>		
	S	"Averaged measured specasurements in the group	ctral irradiance for each

Remarks

Table 109: CDL definition irradiance_avg variable

8.53 Variable: irradiance_avg_noise

	Variable	Storage type	Units
	irradiance_avg_noise	float	none
CDL	float irradiance_avg_noise irradiance_avg_noise:comme spectral pixel of all meas	nt = "Average irradiance	e signal noise for each

Remarks

Table 110: CDL definition irradiance_avg_noise variable

8.54 Variable: irradiance_avg_error

	Variable	Storage type	Units
	irradiance_avg_error	float	none
CDL	float irradiance_avg_error irradiance_avg_error:comme spectral pixel of all meas	nt = "Average irradiance	e signal error for each

Table 111: CDL definition irradiance_avg_error variable

8.55 Variable: irradiance_avg_quality_level

Variable	Storage type	Units
irradiance_avg_quality_level	ubyte	none
irradiance_avg_quality_level	l:long_name = "quali	y level of spectral channel"
;		
irradiance_avg_quality_level	<pre>L:valid_min = 0 ;</pre>	
<pre>irradiance_avg_quality_level:valid_max = 100 ; irradiance_avg_quality_level:comment = "Overall calculated qua"</pre>		
		calculated quality
assessment information for ϵ	each (spectral) pixe	el in the averaged data";
	irradiance_avg_quality_level ubyte irradiance_avg_quality_level irradiance_avg_quality_level irradiance_avg_quality_level irradiance_avg_quality_level irradiance_avg_quality_level	<pre>irradiance_avg_quality_level</pre>

Remarks

Table 112: CDL definition irradiance_avg_quality_level variable

8.56 Variable: irradiance_avg_std

	Variable	Storage type	Units
	irradiance_avg_std	float	none
CDL	float irradiance_avg_std(time,pixel,spectral_channel);		
	<pre>irradiance_avg_std:comment = "Average irradiance signal standard deviation</pre>		
	for each spectral pixel of	f all measurements in th	e group" ;

Remarks

Table 113: CDL definition irradiance_avg_std variable

8.57 Variable: irradiance_avg_spectral_channel_quality

	Variable	Storage type	Units
irrad	diance_avg_spectral_channel quality	ubyte	none
CDL	ubyte irradiance_avg_spectral_; irradiance_avg_spectral_channe quality flag"; irradiance_avg_spectral_channe irradiance_avg_spectral_channe irradiance_avg_spectral_channe irradiance_avg_spectral_channe 16UB, 32UB, 64UB, 128UB; irradiance_avg_spectral_channe bad_pixel, processing_error, s irradiance_avg_spectral_channe information about a (spectral)	el_quality:long_rel_quality:valid_el_quality:valid_el_quality:flag_rel_quality:flag_meaturated, transiel_quality:commer	min = 0; max = 254; values = 0UB, 1UB, 2UB, 8UB, meanings = no_error, missing, ent, rts, underflow; ut = "Quality assessment
Remarks	Flags of measurements ignored by th	e averaging algorith	ms are present.

Table 114: CDL definition irradiance_avg_spectral_channel_quality variable

Units

8.58 Variable: irradiance_avg_col

	Variable	Storage type	Units
	irradiance_avg_col	float	none
CDL	float irradiance avg col(time.scanline.pixel) :	

Remarks

Table 115: CDL definition irradiance_avg_col variable

Variable

8.59 Variable: radiance_avg

	radiance_avg	float	${\sf mol.s^{-1}.m^{-2}.nm^{-1}.sr^{-1}}$
CDL	<pre>radiance_avg:units = "mol radiance_avg:coordinates radiance_avg:ancillary_va ; radiance_avg:comment = "A</pre>	ne,ground_pixel,spectral_channel); mol.s-1.m-2.nm-1.sr-1"; des = "longitude latitude"; r_variables = "radiance_avg_noise radiance_avg_error" = "Averaged measured spectral radiance for each measurements in the group";	
Remarks	satellites. In line with the stand	ard_name for radiance that I	e as measured by sensors on board has been suggested by the cf-satellite .ng_spectral_photon_radiance is

Storage type

Table 116: CDL definition radiance_avg variable

8.60 Variable: radiance_avg_error

	Variable	Storage type	Units
	radiance_avg_error	float	none
CDL	float radiance_avg_error(radiance_avg_error:coordi radiance_avg_error:commen spectral pixel of all mean	nates = "longitude latit t = "Average radiance si	ude" ; gnal error for each

Table 117: CDL definition radiance_avg_error variable

8.61 Variable: radiance_avg_noise

	Variable	Storage type	Units
	radiance_avg_noise	float	none
<pre>float radiance_avg_noise(time,ground_pixel,spectral_channel); radiance_avg_noise:coordinates = "longitude latitude";</pre>			·
	radiance_avg_noise:comment spectral pixel of all meas	t = "Average radiance sig	gnal noise for each

Remarks

Table 118: CDL definition radiance_avg_noise variable

8.62 Variable: radiance_avg_quality_level

	Variable	Storage type	Units
	radiance_avg_quality_level	ubyte	none
CDL	<pre>ubyte radiance_avg_quality_level(time,ground_pixel,spectral_channel) ;</pre>		
	radiance_avg_quality_level:long_name = "qualiy level of spectral channel"		
	<pre>radiance_avg_quality_level:valid_min = 0 ;</pre>		
	radiance_avg_quality_level:	$:$ valid_max = 100;	
	radiance_avg_quality_level:	coordinates = "longi	tude latitude" ;
	radiance_avg_quality_level:comment = "Overall calculated quality assess		
	information for each (spect	cral) pixel in the av	eraged data";

Remarks

Table 119: CDL definition radiance_avg_quality_level variable

8.63 Variable: radiance_avg_spectral_channel_quality

	Variable	Storage type	Units
radianc	e_avg_spectral_channel_quality	ubyte	none
CDL	ubyte radiance_avg_spectral_channel_channel); radiance_avg_spectral_channel_flag"; radiance_avg_spectral_channel_radiance_avg_spectral_channel_radiance_avg_spectral_channel_radiance_avg_spectral_channel_spectral_channel_spectral_channel_spectral_channel_spectral_channel_spectral_channel_spectral_channel_spectral_spectral_channel_spectral_spectral_channel_spectral_channel_spectral_spectral_channel_spectral	quality:long_nar quality:valid_ma quality:valid_ma quality:coordina quality:flag_val quality:flag_mea aturated, trans:	me = "spectral channel quality in = 0; ax = 254; ates = "longitude latitude"; lues = 0UB, 1UB, 2UB, 8UB, anings = no_error, missing, ient, rts, underflow; = "Quality assessment
Remarks	Flags of measurements ignored by th	e averaging algorith	nms are present.

Table 120: CDL definition radiance_avg_spectral_channel_quality variable

8.64 Variable: radiance_avg_std

	Variable	Storage type	Units
	radiance_avg_std	float	none
CDL	<pre>float radiance_avg_std(time,ground_pixel,spectral_channel) ; radiance_avg_std:coordinates = "longitude latitude" ;</pre>		
	<pre>radiance_avg_std:comment each spectral pixel of al</pre>		

Remarks

Table 121: CDL definition radiance_avg_std variable

8.65 Variable: radiance_avg_row

	Variable	Storage type	Units
	radiance_avg_row	float	none
CDL	<pre>float radiance_avg_row(ti radiance_avg_row:comment single row in a measureme</pre>	= "Averaged measured spe	· ·

Remarks

Table 122: CDL definition radiance_avg_row variable

8.66 Variable: radiance_avg_data

	Variable	Storage type	Units
	radiance_avg_data	float	none
CDL	<pre>float radiance_avg_data(t radiance_avg_data:comment single measurements";</pre>		spectral radiance value of a

Remarks

Remarks

 $\textbf{Table 123}: \ \texttt{CDL definition radiance_avg_data\ variable}$

8.67 Variable: percentage_ground_pixels_geolocation_error

	Variable	Storage type	Units
percer	ntage_ground_pixels_geolocation error	float	none
CDL	float percentage_ground_pixels percentage_ground_pixels_geolog pixels with geolocation error"	cation_error:com	

Table 124: CDL definition percentage_ground_pixels_geolocation_error variable

8.68 Variable: percentage_spectral_channels_rts

	Variable	Storage type	Units
	percentage_spectral_channels_rts	float	none
CDI	float percentage_spectral_channels_rts(time);		
	percentage_spectral_channels_	rts:comment = "Pe	rcentage of spectral channels
	for which the RTS flag is set	t" ;	

Remarks

Table 125: CDL definition percentage_spectral_channels_rts variable

8.69 Variable: percentage_spectral_channels_per_scanline_transient

	Variable	Storage type	Units
per	centage_spectral_channels_per scanline_transient	float	none
CDL	<pre>float percentage_spectral_char percentage_spectral_channels_p of spectral channels per scan</pre>	per_scanline_transie	nt:comment = "Percentage

Remarks

Table 126: CDL definition percentage_spectral_channels_per_scanline_transient variable

8.70 Variable: oob_sl_nir_corr_row_avg_blu_irr

	Variable	Storage type	Units
	oob_sl_nir_corr_row_avg_blu_irr	float	electron.s-1
CDL	<pre>float oob_sl_nir_corr_row_avg channel); oob_sl_nir_corr_row_avg_blu_i oob_sl_nir_corr_row_avg_blu_i correction row average, blue</pre>	rr:units = "elec rr:comment = "Ca	tron.s-1"; lculated oob straylight nir

Remarks

Table 127: CDL definition oob_sl_nir_corr_row_avg_blu_irr variable

8.71 Variable: oob_sl_nir_dp_factor_blu_irr

	Variable	Storage type	Units
	oob_sl_nir_dp_factor_blu_irr	float	electron.s-1.nm-1
CDL	<pre>float oob_sl_nir_dp_factor_blu_irr(time,scanline,fiber) ;</pre>		
	<pre>oob_sl_nir_dp_factor_blu_irr:units = "electron.s-1.nm-1" ; oob_sl_nir_dp_factor_blu_irr:comment = "Calculated oob straylight r</pre>		
	factor, blue side irradiance	, for monitoring pu	rposes";

Remarks

Table 128: CDL definition oob_sl_nir_dp_factor_blu_irr variable

8.72 Variable: oob_sl_nir_corr_row_avg_red_irr

	Variable	Storage type	Units
	oob_sl_nir_corr_row_avg_red_irr	float	electron.s-1
CDL	<pre>float oob_sl_nir_corr_row_avg channel) ; oob_sl_nir_corr_row_avg_red_i oob_sl_nir_corr_row_avg_red_i correction row average, red s</pre>	<pre>.rr:units = "electr .rr:comment = "Calc</pre>	on.s-1"; ulated oob straylight nir

Remarks

Table 129: CDL definition oob_sl_nir_corr_row_avg_red_irr variable

8.73 Variable: oob_sl_nir_dp_factor_red_irr

	Variable	Storage type	Units
	oob_sl_nir_dp_factor_red_irr	float	electron.s-1.nm-1
CDL	float oob_sl_nir_dp_factor_red_irr(time,scanline,fiber); oob_sl_nir_dp_factor_red_irr:units = "electron.s-1.nm-1";		
<pre>oob_sl_nir_dp_factor_red_irr:comment = "Calculated oob straylight n factor, red side irradiance, for monitoring purposes";</pre>			

Remarks

Table 130: CDL definition oob_sl_nir_dp_factor_red_irr variable

8.74 Variable: oob_sl_nir_corr_row_avg_blu_rad

	Variable	Storage type	Units
	oob_sl_nir_corr_row_avg_blu_rad	float	electron.s-1
CDL	float oob_sl_nir_corr_row_avg channel); oob_sl_nir_corr_row_avg_blu_r oob_sl_nir_corr_row_avg_blu_r correction row average, blue	ad:units = "elect ad:comment = "Cal	ron.s-1"; culated oob straylight nir

 Table 131:
 CDL definition oob_sl_nir_corr_row_avg_blu_rad variable

8.75 Variable: oob_sl_nir_dp_factor_blu_rad

	Variable	Storage type	Units
	oob_sl_nir_dp_factor_blu_rad	float	electron.s-1.nm-1
CDL	The float oob_sl_nir_dp_factor_blu_rad(time, scanline, fiber);		
	<pre>oob_sl_nir_dp_factor_blu_rad:units = "electron.s-1.nm-1" ; oob_sl_nir_dp_factor_blu_rad:comment = "Calculated oob straylight nir d</pre>		
	factor, blue side radiance,	for monitoring purp	ooses";

Remarks

Table 132: CDL definition oob_sl_nir_dp_factor_blu_rad variable

8.76 Variable: oob_sl_nir_corr_row_avg_red_rad

	Variable	Storage type	Units
	oob_sl_nir_corr_row_avg_red_rad	float	electron.s-1
CDL	float oob_sl_nir_corr_row_avg channel); oob_sl_nir_corr_row_avg_red_r oob_sl_nir_corr_row_avg_red_r correction row average, red s	ad:units = "elect ad:comment = "Cal	ron.s-1"; crolated oob straylight nir

Remarks

Table 133: CDL definition oob_sl_nir_corr_row_avg_red_rad variable

8.77 Variable: oob_sl_nir_dp_factor_red_rad

	Variable	Storage type	Units
	oob_sl_nir_dp_factor_red_rad	float	electron.s-1.nm-1
CDL	<pre>float oob_sl_nir_dp_factor_re oob_sl_nir_dp_factor_red_rad oob_sl_nir_dp_factor_red_rad factor, red side radiance, for</pre>	:units = "electron.: :comment = "Calcula"	s-1.nm-1"; ted oob straylight nir dp

Remarks

Table 134: CDL definition oob_sl_nir_dp_factor_red_rad variable

8.78 Variable: solar_azimuth_angle_irr_cal

	Variable	Storage type	Units
	solar_azimuth_angle	float	degree
CDL	float solar_azimuth_angle	(time,scanline);	
	solar_azimuth_angle:long_n	name = "solar azimuth ang	gle";
	solar_azimuth_angle:standa	ard_name = "solar_azimuth	n_angle" ;
	solar_azimuth_angle:units	= "degree" ;	
	solar_azimuth_angle:valid	$_{min} = -180.f$;	
	solar_azimuth_angle:valid	$_{max} = 180.f$;	
	solar_azimuth_angle:commen	nt = "Azimuth angle of th	ne sun measured from the
	instrument";		

Remarks

Table 135: CDL definition solar_azimuth_angle variable

8.79 Variable: irradiance_avg_data

	Variable	Storage type	Units
	irradiance_avg_data	float	none
CDL	<pre>float irradiance_avg_data irradiance_avg_data:comme of a single measurements"</pre>	nt = "Averaged measured spectral	irradiance value

Remarks

Table 136: CDL definition irradiance_avg_data variable

8.80 Variable: solar_azimuth_angle_rad_cal

	Variable	Storage type	Units
	solar_azimuth_angle	float	degree
CDL	float solar_azimuth_angle solar_azimuth_angle:long_r solar_azimuth_angle:standa solar_azimuth_angle:units solar_azimuth_angle:valid solar_azimuth_angle:valid solar_azimuth_angle:coord: solar_azimuth_angle:comment location on the reference North (East = +90, South =	name = "solar azimuth ang ard_name = "solar_azimuth = "degree" ; _min = -180.f ; _max = 180.f ; inates = "longitude latit nt = "Solar azimuth angle ellipsoid. Angle is mea	gle"; n_angle"; sude"; e at the ground pixel

Table 137: CDL definition solar_azimuth_angle variable

8.81 Variable: signal_avg

	Variable	Storage type	Units
	signal_avg	float	none
CDL		iables = "signal_avg_nois eraged measured spectral :	
Damarka	Linit different attendant average		

Remarks Unit differs between groups

Table 138: CDL definition signal_avg variable

8.82 Variable: signal_avg_error

	Variable	Storage type	Units
	signal_avg_error	float	none
CDL	float signal_avg_error(tinsignal_avg_error:comment all measurements in the gr	= "Average signal e	hannel); rror for each spectral pixel of
Remarks	Unit differs between groups		

g. caps

 $\textbf{Table 139}: \texttt{CDL definition signal_avg_error variable}$

8.83 Variable: signal_avg_noise

	Variable	Storage type	Units
	signal_avg_noise	float	none
CDL	float signal_avg_noise(ti signal_avg_noise:comment all measurements in the g	= "Average signal noise	el); for each spectral pixel of
Remarks	Unit differs between groups		

Table 140: CDL definition signal_avg_noise variable

8.84 Variable: signal_avg_quality_level

	Variable	Storage type	Units
	signal_avg_quality_level	ubyte	none
CDL	ubyte signal_avg_quality_le signal_avg_quality_level:lo signal_avg_quality_level:va signal_avg_quality_level:va signal_avg_quality_level:co	<pre>ong_name = "qualiy lev clid_min = 0 ; clid_max = 100 ;</pre>	rel of spectral channel";
	information for each (spect		1 0

Table 141: CDL definition signal_avg_quality_level variable

8.85 Variable: signal_avg_spectral_channel_quality

	Variable	Storage type	Units
signal	_avg_spectral_channel_quality	ubyte	none
CDL	ubyte signal_avg_spectral_char signal_avg_spectral_channel_qu flag"; signal_avg_spectral_channel_qu signal_avg_spectral_channel_qu signal_avg_spectral_channel_qu 32UB, 64UB, 128UB; signal_avg_spectral_channel_qu pixel, processing_error, satur signal_avg_spectral_channel_qu information about a (spectral)	nality:long_name nality:valid_min nality:valid_max nality:flag_value nality:flag_meani rated, transient; nality:comment =	= "spectral channel quality = 0; = 254; es = 0UB, 1UB, 2UB, 8UB, 16UB, .ngs = no_error, missing, bad rts, underflow; "Quality assessment
Remarks	Flags of measurements ignored by the	ne averaging algorith	ms are present.

Table 142: CDL definition signal_avg_spectral_channel_quality variable

8.86 Variable: signal_avg_std

	Variable	Storage type	Units
	signal_avg_std	float	none
CDL	<pre>float signal_avg_std(time signal_avg_std:comment = spectral pixel of all mea</pre>	"Average signal standard	deviation for each
Remarks	Unit differs between groups		

Table 143: CDL definition signal_avg_std variable

8.87 Variable: signal_avg_data

	Variable	Storage type	Units
	signal_avg_data	float	none
CDL	<pre>float signal_avg_data(tim signal_avg_data:comment = single measurement";</pre>		ctral signal value of a

Table 144: CDL definition signal_avg_data variable

8.88 Variable: signal_avg_row

	Variable	Storage type	Units
	signal_avg_row	float	none
CDL	0 0	e,scanline,spectral_channe "Averaged measured spectr ent" ;	-

Remarks

Table 145: CDL definition signal_avg_row variable

8.89 Variable: signal_avg_col

	Variable	Storage type	Units
	signal_avg_col	float	none
CDL	<pre>float signal_avg_col(time signal_avg_col:comment = single column in a measure</pre>	"Averaged measured spect	ral signal value of a

Remarks

Table 146: CDL definition signal_avg_col variable

8.90 Variable: small_pixel_signal

	Variable	Storage type	Units
	small_pixel_signal	float(*)	none
CDL	31 44 2 3 4 4 7 4 4 7		
	small_pixel_signal_type s	mall_pixel_signal(time,so	canline,pixel);
<pre>small_pixel_signal:long_name = "small pixel photon signal" ;</pre>			signal";
	<pre>small_pixel_signal:_FillValue = 0x1.ep+122 ;</pre>		
<pre>small_pixel_signal:comment = "Measured signal for the spectral</pre>			the spectral channel
	dedicated for the small p	oixel measurements";	_

Remarks

Table 147: CDL definition small_pixel_signal variable

8.91 Variable: percentage-spectral_channels_per_scanline_rts

	Variable	Storage type	Units
perd	centage_spectral_channels_per scanline_rts	float	none
CDL	float percentage_spectral_char percentage_spectral_channels_p spectral channels per scanling	per_scanline_rts:	comment = "Percentage of

Remarks

Table 148: CDL definition percentage_spectral_channels_per_scanline_rts variable

8.92 Variable: percentage-scanlines_with_processing_steps_skipped

	Variable	Storage type	Units	
percer	ntage_scanlines_with_processing steps_skipped	float	none	
CDL	float percentage scanlines with	nrocessing	stens skinned(time)	•

float percentage_scanlines_with_processing_steps_skipped(time) ;
 percentage_scanlines_with_processing_steps_skipped:comment = "Percentage of
 scanlines for which one or more processing steps were skipped";

Remarks

Table 149: CDL definition percentage_scanlines_with_processing_steps_skipped variable

8.93 Variable: percentage_scanlines_with_residual_correction_skipped

Variable	Storage type	Units
percentage_scanlines_with_residual	float	none
correction_skipped		

float percentage_scanlines_with_residual_correction_skipped(time) ;
 percentage_scanlines_with_residual_correction_skipped:comment = "Percentage
 of scanlines for which residual correction was skipped" ;

Remarks

Table 150: CDL definition percentage_scanlines_with_residual_correction_skipped variable

8.94 Variable: percentage_ground_pixels_descending_side_orbit

Variable	Storage type	Units	
percentage_ground_pixels_descending	float	none	
side_orbit			

float percentage_ground_pixels_descending_side_orbit(time) ;
 percentage_ground_pixels_descending_side_orbit:comment = "Percentage of
 ground pixels on the descending side of the orbit" ;

Remarks

Table 151: CDL definition percentage_ground_pixels_descending_side_orbit variable

8.95 Variable: percentage_spectral_channels_per_scanline_defective

	Variable	Storage type	Units
perc	entage_spectral_channels_per scanline_defective	float	none
CDI	float percentage spectral cha	annels ner scanlin	e defective(time scanline) ·

float percentage_spectral_channels_per_scanline_defective(time,scanline) ;
percentage_spectral_channels_per_scanline_defective:comment = "Percentage
 of spectral channels per scanline for which the defective flag is set";

Remarks

Table 152: CDL definition percentage_spectral_channels_per_scanline_defective variable

8.96 Variable: percentage_scanlines_in_spacecraft_manoeuvre

	Variable	Storage type	Units
perce	entage_scanlines_in_spacecraft	float	none
	manoeuvre		
CDL	float percentage_scanlines_in_	spacecraft_manoe	uvre(time) ;
	percentage_scanlines_in_spacec	raft_manoeuvre:c	omment = "Percentage of
	scanlines affected by spacecraft manoeuvres";		

Remarks

Table 153: CDL definition percentage_scanlines_in_spacecraft_manoeuvre variable

8.97 Variable: monitor_straylight_calculated

	Variable	Storage type	Units
	monitor_straylight_calculated	float	electron.s-1
CDL	<pre>float monitor_straylight_cal ; monitor_straylight_calculate monitor_straylight_calculate monitoring purposes";</pre>	d:units = "electron	

Remarks

Table 154: CDL definition monitor_straylight_calculated variable

8.98 Variable: monitor_radiance_wavelength_shift

	Variable	Storage type	Units
monit	or_radiance_wavelength_shift	float	none
CDL	float monitor_radiance_waveler monitor_radiance_wavelength_sl wavelength band around the spe	hift:comment = "Way	velenght shift for a small
Remarks	The name of the variable in the output xxxx is the center wavelength value. wavelength can be found in the variable	The center wavelength a	and the bandwidth around the center

Table 155: CDL definition monitor_radiance_wavelength_shift variable

8.99 Variable: monitor_gain_alignment_factor

	Variable	Storage type	Units
	monitor_gain_alignment_factor	float	none
CDL	float monitor_gain_alignment	_factor(time,scanli	ine) ;
	monitor gain alignment factor:comment = "Gain alignment factor for the		

monitor_gain_alignment_factor:comment = "Gain alignment factor for the measurement calculated in the GainAlignmentCalculationUVN algorithm.

Applied gain alignment factor depends on the settings of this algorithm.

Default, the CKD setting of the gain alignment correction factor is used, not the calculated.";

Remarks

Table 156: CDL definition monitor_gain_alignment_factor variable

8.100 Variable: monitor_gain_drift_factor

	Variable	Storage type	Units
	monitor_gain_drift_factor	float	none
CDL	float monitor_gain_drift_fa monitor_gain_drift_factor:c in the GainDriftCorrectionU on the Engineering CCD gain	omment = "Gain drift VN algorithm. Applie	correction factor as used ed gain drift factor depends

Remarks

Table 157: CDL definition monitor_gain_drift_factor variable

8.101 Variable: measurement_to_detector_row_table

	Variable	Storage type	Units
mea	surement_to_detector_row_table	n/a	none
CDL	<pre>types: msmt_to_det_row_table short detector_start_row; short detector_end_row; } measurement_to_detector_row_table measurement_to_detector_row_table</pre>	able(time,scanline	-1
	measurement row to begin and e		

Table 158: CDL definition measurement_to_detector_row_table variable

8.102 Variable: signal

	Variable	Storage type	Units
	signal	float	none
CDL	<pre>signal:long_name = "spe signal:ancillary_variab spectral_channel_qualit;</pre>	les = "signal_noise signal.	_error quality_level

Remarks

Table 159: CDL definition signal variable

8.103 Variable: signal_error

	Variable	Storage type	Units
	signal_error	byte	none
CDL	byte signal_error(time,so	anline,pixel,spectral_ch	annel) ;
	signal_error:long_name =	"spectral photon signal	error" ;
	signal_error:units = "1"	;	
	signal_error:comment = "T	he signal_error is a mea	sure for the one standard
	deviation error of the bi	as of the measurement si	gnal; it is expressed in
	decibel (dB), i.e. 10 times the base-10 logarithmic value of the		mic value of the ratio
	between the signal and th	e estimation error.";	
		,	

Remarks

Table 160: CDL definition signal_error variable

8.104 Variable: signal_noise

	Variable	Storage type	Units
	signal_noise	byte	none
CDL	byte signal_noise(time,scanline,pixel,spectral_channel);		
	signal_noise:long_name =	"spectral photon signal	noise, one standard
	<pre>deviation" ; signal_noise:units = "1" ;</pre>		
	signal_noise:comment = "The signal_noise is a measure for the one standa		
	deviation random error of the measurement signal; it is expressed in		
	decibel (dB), i.e. 10 times the base-10 logarithmic value of the ra		mic value of the ratio
	between the signal and th	ne random error.";	

Table 161: CDL definition signal_noise variable

8.105 Variable: percentage_ground_pixels_night

	Variable	Storage type	Units
	percentage_ground_pixels_night	float	none
CDL	L float percentage_ground_pixels_night(time);		
	<pre>percentage_ground_pixels_night:comment = "Percentage of ground pixels for</pre>		
	which the night flag is set";		

Remarks

Table 162: CDL definition percentage_ground_pixels_night variable

8.106 Variable: percentage_spectral_channels_transient

	Variable	Storage type	Units
	<pre>percentage_spectral_channels</pre>	float	none
CDL	float percentage_spectral_chapercentage_spectral_channels_channels for which the transi	transient:comment	= "Percentage of spectral

Remarks

Table 163: CDL definition percentage_spectral_channels_transient variable

8.107 Variable: offset_prepostscan_pixels

	Variable	Storage type	Units
	offset_prepostscan_pixels	n/a	none
CDL	<pre>types: datapoint_type { double value ; double error ; } offset_prepostscan_pixels(t) offset_prepostscan_pixels:cc calculated from the detector</pre>	omment = "Detector and	electronics offset value
Remarks	Only available for UVN bands		

Table 164: CDL definition offset_prepostscan_pixels variable

8.108 Variable: percentage_spectral_channels_per_scanline_saturated

	Variable	Storage type	Units
	percentage_spectral_channels_per scanline_saturated	float	none
CDL	float percentage_spectral_cha percentage_spectral_channels_ of spectral channels per scan	per_scanline_satur	ated:comment = "Percentage

Remarks

Table 165: CDL definition percentage_spectral_channels_per_scanline_saturated variable

8.109 Variable: monitor_smear_calculated

	Variable	Storage type	Units
	monitor_smear_calculated	float	electron
CDL	float monitor_smear_calcula monitor_smear_calculated:un monitor_smear_calculated:co used for the detector smear	its = "electron" ; mment = "Calculated de	etector smear values as
Remarks	Only available for UVN bands		

Table 166: CDL definition monitor_smear_calculated variable

8.110 Variable: radiance_avg_col

	Variable	Storage type	Units
	radiance_avg_col	float	none
CDL	<pre>float radiance_avg_col(ti radiance_avg_col:comment single column in a measur</pre>	= "Averaged measured spec	-

Remarks

Table 167: CDL definition radiance_avg_col variable

8.111 Variable: offset_overscan_rows

	Variable	Storage type	Units
	offset_overscan_rows	n/a	none
CDL	<pre>types: datapoint_type { double value ; double error ; } offset_overscan_rows(time, offset_overscan_rows:comme calculated from the detect</pre>	nt = "Detector and elect	
Remarks	Only available for UVN bands		

Table 168: CDL definition offset_overscan_rows variable

8.112 Variable: percentage_spectral_channels_per_scanline_underflow

	Variable	Storage type	Units
per	centage_spectral_channels_per scanline_underflow	float	none
CDL	float percentage_spectral_chan percentage_spectral_channels_p of spectral channels per scanl	er_scanline_und	erflow:comment = "Percentage

Remarks

Table 169: CDL definition percentage_spectral_channels_per_scanline_underflow variable

8.113 Variable: offset_overscan_columns

	Variable	Storage type	Units
	offset_overscan_columns	n/a	none
CDL	<pre>types: datapoint_type { double value ; double error ; } offset_overscan_columns(tim offset_overscan_columns:com calculated from the detector</pre>	nment = "Detector and el	ectronics offset value

Remarks Only available for UVN bands

Table 170: CDL definition offset_overscan_columns variable

8.114 Variable: percentage_scanlines_with_solar_angles_out_of_nominal_range

	Variable	Storage type	Units
-	rcentage_scanlines_with_solar angles_out_of_nominal_range	float	none
CDL	<pre>float percentage_scanlines_wi percentage_scanlines_with_sole "Percentage of scanlines for range";</pre>	ar_angles_out_of_nom	inal_range:comment =

Remarks

Table 171: CDL definition percentage_scanlines_with_solar_angles_out_of_nominal_range variable

8.115 Variable: small_pixel_irradiance

	Variable	Storage type	Units
	small_pixel_irradiance	float(*)	none
CDL	<pre>types: float(*) small_pix</pre>	el_irradiance_type ;	
	<pre>small_pixel_irradiance_type small_pixel_irradiance(time,scanline,pixel) ;</pre>		
	small_pixel_irradiance:lon	g_name = "small pixel p	hoton signal";
	<pre>small_pixel_irradiance:_Fi</pre>	11Value = 0x1.ep+122;	
	small_pixel_irradiance:com	ment = "Measured signal]	for the spectral channe
	dedicated for the small pi	•	-
	dedicated for the small pi	xel measurements";	-

Remarks

Table 172: CDL definition small_pixel_irradiance variable

8.116 Variable: monitor_overscan_rows

	Variable	Storage type	Units
	monitor_overscan_rows	float	none
CDL	<pre>float monitor_overscan_row monitor_overscan_rows:comm for monitoring purposes" ;</pre>	ent = "Signal from the o	

Table 173: CDL definition monitor_overscan_rows variable

8.117 Variable: detector_pixel_filling_histogram

	Variable	Storage type	Units
detec	ctor_pixel_filling_histogram	int	none
CDL	<pre>int detector_pixel_filling_hi detector_pixel_filling_histog filling in electrons for each</pre>	ram:comment = "His	
Remarks	Only available for UVN bands		

Table 174: CDL definition detector_pixel_filling_histogram variable

8.118 Variable: offset_static_ckd

Variable	Storage type	Units
offset_static_ckd	n/a	none
offset_static_ckd:comment	= "Detector and electron	
obtained from the calibrat		ics offset value,
	<pre>offset_static_ckd types: datapoint_type { double value ; double error ; } offset_static_ckd(time,scatoffset_static_ckd:comment</pre>	offset_static_ckd n/a types: datapoint_type { double value ; double error ; } offset_static_ckd(time,scanline,ccd_gain,parity) ; offset_static_ckd:comment = "Detector and electron obtained from the calibration key-data" ;

Remarks Only available for UVN bands

Table 175: CDL definition offset_static_ckd variable

8.119 Variable: percentage_spectral_channels_defective

	Variable	Storage type	Units
	percentage_spectral_channels	float	none
	defective		
CDL	L float percentage_spectral_channels_defective(time);		
	percentage_spectral_channels_defective:comment = "Flags of measurements		
	ignored by the averaging algorithms are present.";		

Table 176: CDL definition percentage_spectral_channels_defective variable

8.120 Variable: percentage_spectral_channels_missing

	Variable	Storage type	Units
perc	entage_spectral_channels_missing	float	none
CDL	CDL float percentage_spectral_channels_missing(time);		
	<pre>percentage_spectral_channels_missing:comment = "Percentage of spectral</pre>		= "Percentage of spectral
	channels for which the missing	flag is set";	

Remarks

 $\textbf{Table 177: CDL definition } \texttt{percentage_spectral_channels_missing } \textit{variable}$

8.121 Variable: percentage_scanlines_in_south_atlantic_anomaly

Variable	Storage type	Units	
percentage_scanlines_in_south	float	none	
atlantic_anomaly			
DL float percentage_scanlines_:	L float percentage_scanlines_in_south_atlantic_anomaly(time);		
percentage_scanlines_in_south_atlantic_anomaly:comment = "Percentage or		mment = "Percentage of	
scanlines in the South Atlantic Anomaly (SAA)";			

Remarks

Table 178: CDL definition percentage_scanlines_in_south_atlantic_anomaly variable

8.122 Variable: storage_time

	Variable	Storage type	Units
	storage_time	float	S
CDL	<pre>float storage_time(nsett: storage_time:long_name = storage_time:units = "s" storage_time:comment = "" the detector during read-</pre>	"Storage time";; ; [The time a row has reside	ed in the storage area of

Table 179: CDL definition storage_time variable

8.123 Variable: percentage_spectral_channels_per_scanline_processing_error

Varial	ole	Storage type	Units
percentage_spectra scanline_proce	-	float	none
error(time,s percentage_s	spectral_channels_poor of spectral channel	er_scanline_proc	<pre>e_processing essing_error:comment = for which the processing</pre>

Remarks

Table 180: CDL definition percentage_spectral_channels_per_scanline_processing_error variable

8.124 Variable: percentage_spectral_channels_saturated

	Variable	Storage type	Units
per	rcentage_spectral_channels saturated	float	none
CDL float percentage_spectral_channels_sat percentage_spectral_channels_saturated channels for which the saturated flag		_saturated:comment =	
Remarks			

Table 181: CDL definition percentage_spectral_channels_saturated variable

8.125 Variable: irradiance_avg_row

	Variable	Storage type	Units
	irradiance_avg_row	float	none
CDL	float irradiance_avg_row(time,scanline,spectral_channel);		
<pre>irradiance_avg_row:comment = "Averaged measured spectral irradiance of a single row in a measurement";</pre>			ctiai illadiance value

Table 182: CDL definition irradiance_avg_row variable

8.126 Variable: percentage_spectral_channels_processing_error

	Variable	Storage type	Units
	percentage_spectral_channels	float	none
	<pre>processing_error</pre>		
CDL	DL float percentage_spectral_channels_processing_error(time);		
	<pre>percentage_spectral_channels_processing_error:comment = "Percentage of</pre>		
	spectral channels for which	the processing error	r flag is set" ;

Remarks

Table 183: CDL definition percentage_spectral_channels_processing_error variable

8.127 Variable: percentage_spectral_channels_underflow

	Variable	Storage type	Units
	percentage_spectral_channels underflow	float	none
CDL	float percentage_spectral_cha	annels_underflow(ti	me);
	<pre>percentage_spectral_channels_underflow:comment = "Percentage of spectral channels for which the underflow flag is set";</pre>		

Remarks

Table 184: CDL definition percentage_spectral_channels_underflow variable

8.128 Variable: monitor_read_out_register

	Variable	Storage type	Units
:	monitor_read_out_register	float	none
CDL	float monitor_read_out_regis monitor_read_out_register:co from the read out register"	omment = "Spectral	,spectral_channel); channel signal values as read
Remarks	Only available for UVN bands		

Table 185: CDL definition monitor_read_out_register variable

8.129 Variable: percentage_ground_pixels_sun_glint

	Variable	Storage type	Units
perce	entage_ground_pixels_sun_glint	float	none
CDL	float percentage_ground_pixels percentage_ground_pixels_sun_g for which the sun glint flag i	glint:comment = "F	

Remarks

 $\textbf{Table 186}: \texttt{CDL definition} \ \texttt{percentage_ground_pixels_sun_glint} \ \texttt{variable}$

8.130 Variable: monitor_radiance

	Variable	Storage type	Units
	monitor_radiance	float	none
CDL	<pre>float monitor_radiance(time,scanline,pixel) ; monitor_radiance:comment = "Average radiance of a small wavelength band around the specified wavelength, for monitoring purposes.";</pre>		
Remarks	The name of the variable in the output file is monitor_radiance_xxxxnm where xxxx is the cer wavelength value. The center wavelength and the bandwidth around the center wavelength be found in the variable attributes center_wavelength and wavelength_bandwidth		

 Table 187: CDL definition monitor_radiance variable

8.131 Variable: percentage_ground_pixels_geometric_boundary_crossing

	Variable	Storage type	Units
percen	tage_ground_pixels_geometric boundary_crossing	float	none
CDL	<pre>float percentage_ground_pixels percentage_ground_pixels_geome of ground pixels that cross a ;</pre>	tric_boundary_cr	cossing:comment = "Percentage
Romarke			

Remarks

 Table 188: CDL definition percentage_ground_pixels_geometric_boundary_crossing variable

8.132 Variable: monitor_smear_observed

	Variable	Storage type	Units	
	monitor_smear_observed	float	electron	
CDL	<pre>float monitor_smear_observed(time,scanline,dual_dim,spectral_channel) monitor_smear_observed:units = "electron"; monitor_smear_observed:comment = "Observed detector smear values from masked regions of the detector, for monitoring purposes";</pre>			
Remarks	Only available for UVN bands			

Table 189: CDL definition monitor_smear_observed variable

8.133 Variable: percentage_spectral_channels_per_scanline_missing

	Variable	Storage type	Units
perc	entage_spectral_channels_per scanline_missing	float	none
CDL	<pre>float percentage_spectral_channels_per_scanline_missing(time,scanline) ; percentage_spectral_channels_per_scanline_missing:comment = "Percentage of spectral channels per scanline for which the missing flag is set";</pre>		

Remarks

 Table 190:
 CDL definition percentage_spectral_channels_per_scanline_missing variable

8.134 Variable: percentage_ground_pixels_solar_eclipse

	Variable	Storage type	Units
	<pre>percentage_ground_pixels_solar</pre>	float	none
CDL	float percentage_ground_pixel percentage_ground_pixels_sola pixels for which the solar ed	r_eclipse:comment	= "Percentage of ground

Table 191: CDL definition percentage_ground_pixels_solar_eclipse variable

Appendix A Estimated product size

Table 192 lists the estimated product sizes for the eight different standard radiance products. This estimation is based on the netCDF product definition as presented in this document, No compression has been applied. The baseline for the granule size of the standard products is one orbit; no sliced products, i.e. products covering a part of the orbit are foreseen.

Near-real time products (NRT) cover approximately one data slice of one total data downlink volume (see chapter 6) rather than one orbit. Because the standard products and NRT products are based on the same netCDF product definition, the product sizes of these slices can be estimated from Table 192 taking into account that the file size is proportional to the number of scanlines. The reported number of scanlines are applicable to orbits without solar irradiance measurements and for the instrument mode with a 7km along-track ground pixel size. For orbits with a solar irradiance measurement, the number of scanlines for radiance is reduced to approximately 2906. For the orbits with the instrument mode with a 5.5km along-track ground pixel size, the number of scanlines for radiance is increased with approximately 29%.

Detector	UV		UVIS		NIR		SWIR	
Band	1	2	3	4	5	6	7	8
spectral_channel	497	497	497	497	497	497	480	480
scanline	3246	3246	3246	3246	3246	3246	3246	3246
ground_pixel	77	448	450	450	448	448	215	215
Product size (GByte)	1.0	5.6	5.7	5.7	5.7	5.7	2.6	2.6

Table 192: Estimated product size of radiance products; these sizes largely depend on the size of the dimensions spectral_channel, scanline and ground_pixel.

Estimated product sizes for the irradiance, calibration and engineering products are presented in the table below (Table 193). For all products both the average data volumes and typical product size are presented. Especially for irradiance products there is a substantial difference between these, as the irradiance products are only generated for a selection of orbits.

Product	Average Product size (GByte)	Typical Product size (GByte)
Irradiance UVN	0.003	0.030
Irradiance SWIR	0.0006	0.006
Calibration UVN	19.59	17.52
Calibration SWIR	3.42	3.07
Engineering	0.06	0.06

Table 193: Estimated product size irradiance, calibration and engineering products

Appendix B Processing classes

Class	Name	Definition
		Undefined
0	Undefined	Value to indicate that a processing class was explicitly not set
		Nominal modes
1	Forth radiance	Nominal earth radiance measurement
1	Earth_radiance	
2	Earth_radiance_special	Earth radiance special mode. Can be used for special radiance measurements that have a special purpose (e.g. specific campaigns, geolocation validation) or require special handling (e.g. zoom modes)
3	Solar_irradiance	Nominal solar irradiance measurement
4	Solar_irradiance_special	Solar Irradiance special mode. Can be used for special irradiance measurements that have a special purpose (e.g. back-up diffuser) or require special handling (e.g. zoom modes)
5-15	-	Reserved for future use
	li	n-flight calibration modes
16	DLED	Detector LED measurement
17	CLED	Common LED measurement
18	WLS	White Light Source measurement
19	SLS	Spectral Line Source measurement
20	Dark	Dark current measurement
21	Background	Background measurement
22	CTE	UVN CTE measurement (using ClkDrvAb = 1)
23	No_clock	UVN no clocking measurement (using ClkDrvAll = 1)
24	Reverse_clock	UVN reverse clocking measurement (using reverse clocking timing for RiseR* and FallR*)
25	Storage	UVN CCD Storage section characterization measurement
26	Flush	Detector flush mode
27	Orbit identification	Special IcID used for identification of the different orbit types.
28	RTS	Measurement for identification of pixels that have Random Telegraph Signal (RTS) behaviour
29	-	Reserved for future use
30	-	Reserved for future use
31	Background_radiance	Background measurement for an earth radiance measurement
32	Background_radiance_special	Background measurement for an earth radiance special measurement
33	Background_irradiance	Background measurement for a solar irradiance measurement
34	Background_irradiance_special	Background measurement for a solar irradiance special measurement
35-39	-	Reserved for future use
40	Electronics_cal_offset	Measurement for calibration of the electronics offset
41	Electronics_cal_gain	Measurement for calibration of the electronics gain
42	Electronics_cal_linearity	Measurement for calibration of the electronics (non-)linearity
43-63	-	Reserved for future use
		Test modes
64	ICU_test	ICU test mode
65	_ DEM_test	DEM test mode
66	Functional_test	Instrument functional test

Class	Name	Definition
67	Processor_test	Data processor software test
68	Auto_optimization	Automated optimization measurement
69-95	-	Reserved for future use
	1	Modes for specific processing
96	Discard	Discard / ignore data
97	Process BU	Process data up-to binary units (i.e. no processing)
98	Process_electrons	Process data up-to electrons
99	Process_electron_flux	Process data up-to electrons per second
100	Process_photon_flux	Process data up-to photons per second (similar to Earth radiance)
101	Process_upto_binning	Process data up-to binning factor correction
102-127	- 1 - 0	Reserved for future use
		On-ground calibration modes
128	OCAL	Generic on-ground calibration processing, nominal mode
129	OCAL_special	Generic on-ground calibration processing, special mode
130-200		Reserved for future use
201	OCAL_radiance	Nominal on-ground calibration radiance measurement
202	OCAL_radiance_special	On-ground calibration radiance special mode
203	OCAL irradiance	Nominal on-ground calibration irradiance measurement
204	OCAL_irradiance_special	On-ground calibration irradiance special mode
205-215		Reserved for future use
216	OCAL_DLED	On-ground calibration detector LED measurement
217	OCAL_CLED	On-ground calibration common LED measurement
218	OCAL_WLS	On-ground calibration White Light Source measurement
219	OCAL_SLS	On-ground calibration Spectral Line Source measurement
220	OCAL Dark	On-ground calibration dark current measurement
221	OCAL Background	On-ground calibration background measurement
222	OCAL_CTE	On-ground calibration UVN CTE measurement (using ClkDrvAb = 1)
223	OCAL_No_clock	On-ground calibration UVN no clocking measurement (using ClkDrvAll = 1)
224	OCAL_Reverse_clock	On-ground calibration UVN reverse clocking measurement (using reverse clocking timing for RiseR* and FallR*)
225	OCAL_Storage	On-ground calibration UVN CCD Storage section characterization measurement
226	OCAL_Flush	On-ground calibration detector flush mode
227-255	-	Reserved for future use
		Unused
Values 25	6 through 32767 are not used.	

Table 194: Processing classes