PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION

S3-A SLSTR Cyclic Performance Report

Cycle No. 020

Start date: 11/07/2017

End date: 07/08/2017

Ref.: S3MPC.RAL.PR.02-020 Issue: 1.0 Date: 14/08/2017 Contract: 4000111836/14/I-LG

Customer:	ESA	Document Ref.:	S3MPC.RAL.PR.02-020
Contract No.:	4000111836/14/I-LG	Date:	14/08/2017
		Issue:	1.0

Project:	PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION								
Title:	S3-A SLSTR Cyclic Performance Report								
Author(s):	SLSTR ESLs								
Approved by:	D. Smith, SLSTR ESL Coordinator	D. Smith, SLSTR ESL Authorized by Frédéric Rouffi, OPT Technical Performance Manager							
Distribution:	ESA, EUMETSAT, S3MPC consol	rtium							
Accepted by ESA	S. Dransfeld, MPC Deputy TO for OPT P. Féménias, MPC TO	S. Dransfeld, MPC Deputy TO for OPT P. Féménias, MPC TO							
Filename	S3MPC.RAL.PR.02-020 - i1r0 - 5	SLSTR Cyclic Report 0	20.docx						

Disclaimer

The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

Changes Log

Version	Date	Changes
1.0	14/08/2017	First Version

List of Changes

Version	Section	Answers to RID	Changes

S3-A SLSTR Cyclic Performance Report

Cycle No. 020

Table of content

1	INSTRUMENT MONITORING	
	1.1 INSTRUMENT TEMPERATURES	4
	1.2 SCANNER PERFORMANCE	8
	1.3 DETECTOR NOISE LEVELS	
	1.3.1 VIS and SWIR channel signal-to-noise	
	1.3.2 TIR channel NEDT	
	1.4 CALIBRATION FACTORS	
	1.4.1 VIS and SWIR VISCAL signal response	
2	EVENTS	17
3	APPENDIX A	18

List of Figures

Figure 1: Detector temperatures for each channel from 1st March 2016. Discontinuities occur for the infrared channels where the FPA was heated for decontamination or following an anomaly. The vertical dashed lines indicate the start and end of each cycle. ------ 4

Figure 2: Blackbody temperature and baseplate gradient trends. The vertical dashed lines indicate the start and end of each cycle. ------- 5

Figure 3: Baffle temperature trends. The vertical dashed lines indicate the start and end of each cycle. - 6

Figure 4: OME temperature trends showing the paraboloid stops and flip baffle (top two plots) and optical bench and scanner and flip assembly (lower two plots). The top two plots only show data starting from 30th July 2016. The vertical dashed lines indicate the start and end of each cycle. ------7

Figure 6: Scanner and flip jitter, showing mean, stddev and max/min position compared to the expected one for the oblique view. The vertical dashed lines indicate the start and end of each cycle.------9

Figure 7: VIS and SWIR channel signal-to-noise of the measured VISCAL signal in each orbit. Different colours indicate different detectors.-----11

Figure 9: VISCAL signal trend for VIS channels (nadir view). -----15

Figure 10: VISCAL signal trend for SWIR channels (nadir view).-----16

1 Instrument monitoring

1.1 Instrument temperatures

- Instrument temperatures were stable and consistent with previous operations until an anomaly occurred on 30th July at 14:33. This was recovered by running a decontamination cycle (see Section 2). The detectors warmed up following the anomaly and during the decontamination. They were then cooled down again and the temperatures returned to their expected values towards the end of the cycle.
- Blackbody, baffle and OME temperatures peaked around 3rd January when the Earth was at perihelion. In cycle 20, the blackbody temperatures fell during the decontamination that followed the anomaly on 30th July but have returned to their expected values afterwards.

Figure 1: Detector temperatures for each channel from 1st March 2016. Discontinuities occur for the infrared channels where the FPA was heated for decontamination or following an anomaly. The vertical dashed lines indicate the start and end of each cycle.

Figure 2: Blackbody temperature and baseplate gradient trends. The vertical dashed lines indicate the start and end of each cycle.

Figure 3: Baffle temperature trends. The vertical dashed lines indicate the start and end of each cycle.

Figure 4: OME temperature trends showing the paraboloid stops and flip baffle (top two plots) and optical bench and scanner and flip assembly (lower two plots). The top two plots only show data starting from 30th July 2016. The vertical dashed lines indicate the start and end of each cycle.

1.2 Scanner performance

Scanner performance has been consistent with previous operations and within required limits.

Figure 5: Scanner and flip jitter, showing mean, stddev and max/min position compared to the expected one for the nadir view. The vertical dashed lines indicate the start and end of each cycle.

Figure 6: Scanner and flip jitter, showing mean, stddev and max/min position compared to the expected one for the oblique view. The vertical dashed lines indicate the start and end of each cycle.

1.3 Detector noise levels

1.3.1 VIS and SWIR channel signal-to-noise

The VIS and SWIR channel noise is stable and consistent with previous operations, except for a period around the anomaly and decontamination, as shown by the signal-to-noise ratio of the measured VISCAL signal in Figure 7. The VIS channel signal-to-noise ratio drops gradually on the 31st July because the visible detectors started warming up before they were switched off for the decontamination phase. After the decontamination was over, the signal-to-noise recovered to the previous levels. Table 1 and Table 2 give the average signal-to-noise in each cycle excluding the anomaly/decontamination period. Note that this averages over the significant detector-detector dispersion for the SWIR channels that is shown in Figure 7.

26 Ma@O Apr15 Ma@9 JurO4 Jul29 Jul23 Aug 7 Sepl2 Oc06 No@1 De26 De20 Janl4 Feb11 Ma@5 Apr30 Apr25 May9 Jur14 JuD8 Aug Date S2 Signal to Noise

De26 De20

Ap@5

Mayl 9

Mar05

400 SNR 30

100

700 🎟

.....

a20 Apr15 Maj09 Jun04 Jul29 Jul23 Aug17

Figure 7: VIS and SWIR channel signal-to-noise of the measured VISCAL signal in each orbit. Different colours indicate different detectors.

Table 1: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycles 009-020
averaged over all detectors for the nadir view.

	Average		Nadir Signal-to-noise ratio											
	Reflectance Factor	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle 014	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	
		005	010	011	01E	010	011	010	010	¥1/	010	015	010	
S1	0.187	229	236	235	233	226	217	224	233	234	231	229	233	
S2	0.194	233	238	238	236	234	227	230	236	236	232	231	235	
S3	0.190	235	238	239	235	230	221	230	236	238	228	231	230	
S 4	0.191	141	141	145	141	139	137	139	142	140	140	139	137	
S 5	0.193	235	236	235	238	234	234	233	233	235	236	233	232	
S 6	0.175	140	143	147	145	143	141	144	142	143	143	142	140	

 Table 2: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycles 009-020,

 averaged over all detectors for the oblique view.

	Average		Oblique Signal-to-noise ratio											
	Reflectance Factor	Cycle 009	Cycle 010	Cycle 011	Cycle 012	Cycle 013	Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020	
S1	0.166	242	249	249	247	238	229	236	243	247	246	242	241	
S2	0.170	247	254	253	250	241	232	241	248	251	249	247	247	
S3	0.168	249	251	251	244	237	227	236	245	249	244	242	239	
S4	0.166	107	109	112	112	108	107	108	108	111	110	109	108	
S5	0.166	168	173	173	173	169	169	172	169	169	171	168	168	
S6	0.155	111	110	114	113	105	106	107	109	109	110	108	106	

1.3.2 TIR channel NEDT

The thermal channel NEDT values are consistent with previous operations and within the requirements, except for a period around the anomaly and decontamination. NEDT values for each cycle, averaged over all detectors and both Earth views, are shown in Table 3 and Table 4.

Figure 8: NEDT trend for the thermal channels. Blue points were calculated from the cold blackbody signal and red points from the hot blackbody. Horizontal lines indicate the requirement (dashed) and goal (dotted) as well as the measured values on ground (red and blue dashed).

>	Sentinel-3 MPC	Ref.:	S3MPC.RAL.PR.02-020
SENTINEL 3	S3-A SI STR Cyclic Performance Report	Issue:	1.0
Mission Performance Contro	55-A 525TK Cyclic Ferformance Report	Date:	14/08/2017
	Cycle No. 020	Page:	14

Table 3: NEDT for cycles 009-020 averaged over all detectors for both Earth views towards the +YBB (hot).

		Cycle 009	Cycle 010	Cycle 011	Cycle 012	Cycle 013	Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020
+YBB temp (K)		302.381	302.822	303.289	303.680	303.621	303.206	302.674	302.544	302.541	302.593	302.386	302.348
	S7	17.3	17.2	16.9	16.9	16.8	16.9	17.2	17.2	17.2	18.1	17.2	17.2
NEDT	S8	11.3	10.9	11.0	11.0	11.1	11.0	10.9	10.9	11.0	11.1	11.0	11.1
(mK)	S 9	18.1	17.1	17.4	17.7	17.9	17.6	17.0	17.0	17.2	17.5	17.4	17.5
(,	F1	269	265	260	260	260	260	268	268	271	297	276	276
	F2	27.7	27.5	27.7	28.0	28.0	27.9	27.6	27.6	27.8	27.8	27.8	27.8

Table 4: NEDT for cycles 009-020 averaged over all detectors for both Earth views towards the -YBB (cold).

		Cycle 009	Cycle 010	Cycle 011	Cycle 012	Cycle 013	Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020
-YBB temp (K)		265.020	265.575	266.112	266.512	266.353	265.807	265.183	265.136	265.260	265.412	265.125	265.000
	S7	49.3	48.1	47.2	46.6	46.8	47.9	48.7	49.0	48.8	46.9	49.1	49.5
NEDT	S8	14.7	14.4	14.4	14.5	14.4	14.4	14.2	14.2	14.3	14.2	14.3	14.4
NEDT (mK)	S9	22.7	21.5	21.8	22.2	22.4	22.1	21.3	21.4	21.6	21.6	21.9	22.0
	F1	1220	1209	1162	1123	1130	1178	1222	1191	1199	1163	1229	1235
	F2	30.2	29.3	29.5	29.6	29.6	29.6	29.2	29.3	29.3	29.4	29.6	29.7

1.4 Calibration factors

1.4.1 VIS and SWIR VISCAL signal response

Signals from the VISCAL source for the VIS channels show oscillations due to the build up of ice on the optical path within the FPA. Decontamination must be carried out periodically in order to warm up the FPA and remove the ice. The latest decontamination cycle was successfully performed following the anomaly on 30th July – see Section 2. The VISCAL signal has returned to its expected value following the decontamination.

Figure 9: VISCAL signal trend for VIS channels (nadir view).

Date

Figure 10: VISCAL signal trend for SWIR channels (nadir view).

2 Events

SLSTR was switched on and operating nominally during the cycle, with SUE scanning and autonomous switching between day and night modes until an anomaly occurred on 30th July 2017.

The anomaly is suspected to be due to a double bit flip error and caused the instrument to transition to Standby-Refuse mode. It occurred at 14:33 on 30th July 2017. Recovery was carried out by running a full decontamination cycle. The decontamination cycle, which involves warming the instrument to evapourate any residual water ice from the focal plane unit, would otherwise have been due at the end of September.

The instrument was switched off at 15:15 on 31^{st} July and the decontamination started at 16:56. Cooling of the infrared detectors following the warm-up was started at approximately 08:55 on 5^{th} August. The infrared detectors were switched on again when the instrument was transitioned to ON_DUTY mode at 11:04 on 6^{th} August.

14:33, 30 July 2017	Anomaly - IR detectors start to warm up
15:15, 31 July 2017	Instrument switched off
16:56, 31 July 2017	Decontamination started
08:38, 4 th Aug 2017	Scanning re-started
08:55, 5 th Aug 2017	Cooling of IR channels started
11:04, 6 th Aug 2017	Instrument switched to ON_DUTY mode
	(IR channels switched on)
	IR detector temperatures stable

Table 5: Timeline of anomaly/decontamination/cooldown

Due to the degradation in calibration and signal-to-noise, data obtained between 14:33 on 30^{th} July and 11.04 on 6^{th} August should not be used.

3 Appendix A

Other reports related to the Optical mission are:

S3-A OLCI Cyclic Performance Report, Cycle No. 020 (ref. S3MPC.ACR.PR.01-020)

All Cyclic Performance Reports are available on MPC pages in Sentinel Online website, at: <u>https://sentinel.esa.int</u>

End of document