PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Start date: 23/11/2017

End date: 20/12/2017

Mission
Performance
Centre

SENTINEL 3

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Contract: 4000111836/14/I-LG

Customer:	ESA	Document Ref.:	S3MPC.RAL.PR.02-025
Contract No.:	4000111836/14/I-LG	Date:	11/01/2018
		Issue:	1.0

Project:	PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION										
Title:	S3-A SLSTR Cyclic Performance	Report									
Author(s):	SLSTR ESLs										
Approved by:	D. Smith, SLSTR ESL Coordinator	Authorized by	Frédéric Rouffi, OPT Technical Performance Manager								
Distribution:	ESA, EUMETSAT, S3MPC conso	rtium									
Accepted by ESA	S. Dransfeld, MPC Deputy TO for OPT P. Féménias, MPC TO										
Filename	S3MPC.RAL.PR.02-025 - i1r0 -	 SLSTR Cyclic Report 0	 25.docx								

Disclaimer

The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: iii

Changes Log

Version	Date	Changes
1.0	11/01/2018	First Version

List of Changes

Version	Section	Answers to RID	Changes

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: iv

Table of content

0	PRO	CESSING BASELINE VERSION	1
1	INST	RUMENT MONITORING	2
	4.4		2
	1.1	INSTRUMENT TEMPERATURES	
	1.2	SCANNER PERFORMANCE	
	1.3	DETECTOR NOISE LEVELS	
	1.3.1	a c c. g cc	
	1.3.2		
	1.4	CALIBRATION FACTORS	
	1.4.1	1 VIS and SWIR VISCAL signal response	12
2	LEVE	EL-1 PRODUCT VALIDATION	14
	2.1	GEOMETRIC CALIBRATION/VALIDATION	14
	2.2	RADIOMETRIC VALIDATION	15
	2.3	IMAGE QUALITY	15
3	LEVE	EL 2 SST VALIDATION	16
	3.1	DEPENDENCE ON LATITUDE, TCWV, SATELLITE ZA AND DATE	16
	3.2	SPATIAL DISTRIBUTION OF MATCH-UPS	17
	3.3	MATCH-UPS STATISTICS	18
4	LEVE	EL 2 LST VALIDATION	19
	4.1	CATEGORY-A VALIDATION	19
	4.2	CATEGORY-C VALIDATION	21
5	EVEN	NTS	22
6	APPE	ENDIX A	23
			_

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: v

List of Figures

Figure 1: Detector temperatures for each channel from 1st March 2016. Discontinuities occur for the infrared channels where the FPA was heated for decontamination or following an anomaly. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit
Figure 2: Blackbody temperature and baseplate gradient trends. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit 2
Figure 3: Baffle temperature trends. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit
Figure 4: Opto-Mechanical Enclosure (OME) temperature trends showing the paraboloid stops and flip baffle (top two plots) and optical bench and scanner and flip assembly (lower two plots). The top two plots only show data starting from 30th July 2016. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit
Figure 5: Scanner and flip jitter, showing mean, stddev and max/min position per orbit compared to the expected one for the nadir view. The vertical dashed lines indicate the start and end of each cycle 5
Figure 6: Scanner and flip jitter, showing mean, stddev and max/min position per orbit compared to the expected one for the oblique view. The vertical dashed lines indicate the start and end of each cycle 6
Figure 7: VIS and SWIR channel signal-to-noise of the measured VISCAL signal in each orbit. Different colours indicate different detectors8
Figure 8: NEDT trend for the thermal channels. Blue points were calculated from the cold blackbody signal and red points from the hot blackbody. Horizontal lines indicate the requirement (dashed) and goal (dotted) as well as the measured values on ground (red and blue dashed)9
Figure 9: VISCAL signal trend for VIS channels (nadir view)11
Figure 10: VISCAL signal trend for SWIR channels (nadir view)12
Figure 11: Daily offset results in km from the GeoCal Tool analysis for Nadir along and across track (top two plots) and Oblique along and across track (bottom two plots). The error bars show the standard deviation. The x-axis shows the date (month/year)13
Figure 12: Daytime Level-3 image for visible channels on 9 th December 201714
Figure 13: Dependence of median and robust standard deviation of match-ups between SLSTR SST _{skin} and drifting buoy SST _{depth} for Cycle 25 as a function of latitude, total column water vapour (TCWV), satellite zenith angle and date. The data gaps throughout the cycle are due to delays in match-up production
Figure 14: Spatial distribution of match-ups between SLSTR SST _{skin} and drifting buoy SST _{depth} for Cycle 25.16
Figure 15: Validation of the SL_2_LST product over the mid-July to mid-November reprocessed period at three Gold Standard in situ stations managed by the Karlsruhe Institute of Technology: Evora, Portugal (left); Gobabeb, Namibia (centre); Kalahari-Heimat, Namibia (right). [Results courtesy of Maria Martin through the GlobTemperature Project]

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: vi

List of Tables

Table 1: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycles 114-025, averaged over all detectors for the nadir view.	
Table 2: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycle 114-025, averaged over all detectors for the oblique view.	
Table 3: NEDT for cycles 014-025 averaged over all detectors for both Earth views towards the +Y	
Table 4: NEDT for cycles 014-025 averaged over all detectors for both Earth views towards the —Y	
able 5: SLSTR drifter match-up statistics for Cycle 25	-17

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 1

O Processing Baseline Version

IPF	IPF / Processing Baseline version	Date of deployment
SL1	06.14 / 2.17	CGS: 05/07/2017 13:15 UTC (NRT)
		PAC: 05/07/2017 12:34 UTC (NTC)
SL2	06.12 / 2.17	CGS: 05/07/2017 13:16 UTC (NRT)
		PAC: 05/07/2017 12:42 UTC (NTC)

SENTINEL 3 Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 2

1 Instrument monitoring

1.1 Instrument temperatures

- Instrument temperatures were stable and consistent with expected values following the decontamination phase which was performed towards the end of Cycle 20.
- In Cycle 25, blackbody, baffle and OME temperatures were rising as the Earth approached perihelion, but are still within expected ranges. Gradients across the blackbody baseplate are within their expected range.

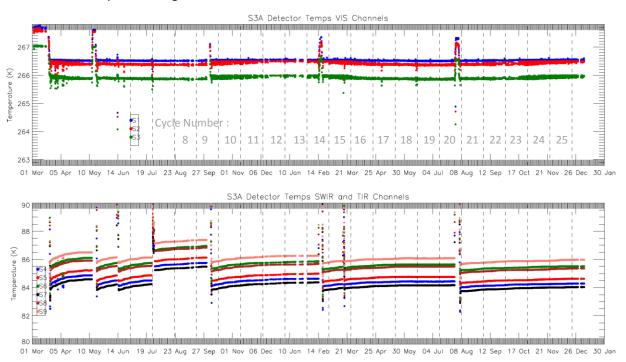


Figure 1: Detector temperatures for each channel from 1st March 2016. Discontinuities occur for the infrared channels where the FPA was heated for decontamination or following an anomaly. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit.

Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

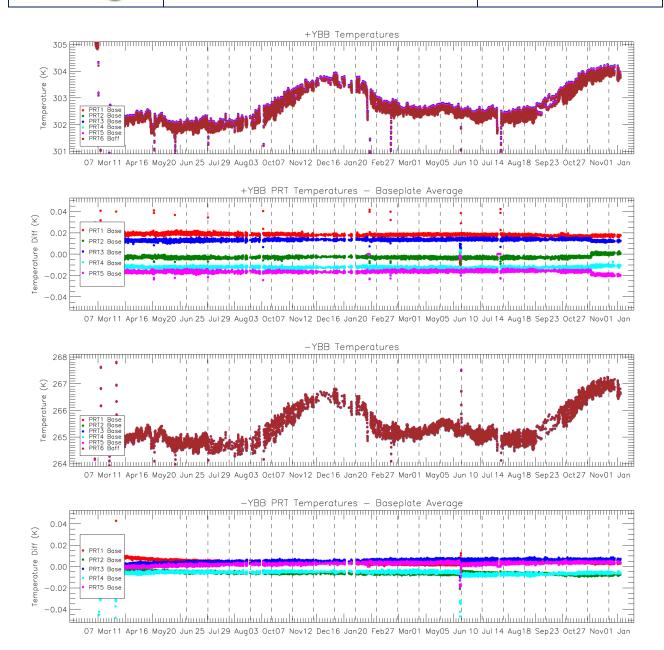


Figure 2: Blackbody temperature and baseplate gradient trends. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit.

SENTINEL 3 Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

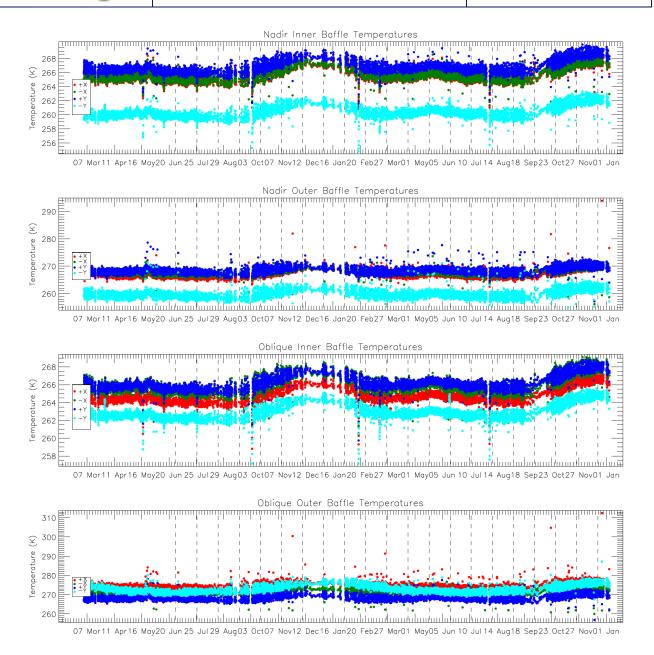


Figure 3: Baffle temperature trends. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit.

Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

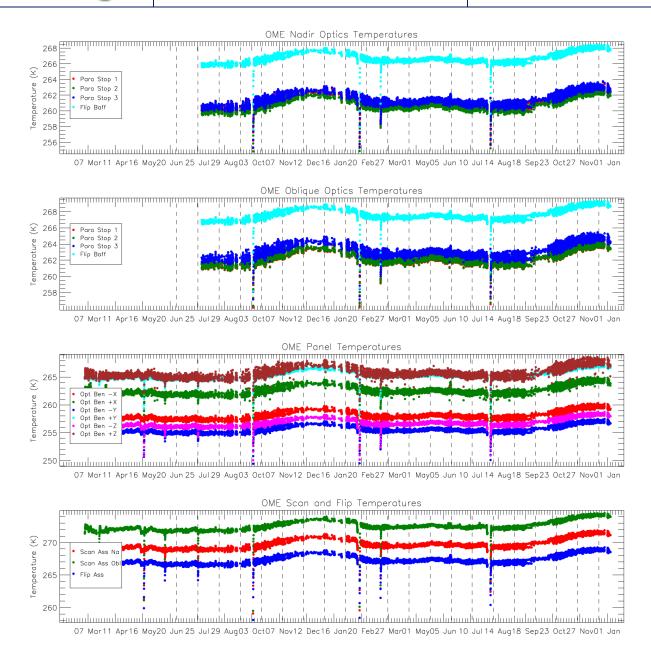


Figure 4: Opto-Mechanical Enclosure (OME) temperature trends showing the paraboloid stops and flip baffle (top two plots) and optical bench and scanner and flip assembly (lower two plots). The top two plots only show data starting from 30th July 2016. The vertical dashed lines indicate the start and end of each cycle. Each dot represents the average temperature in one orbit.

Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 6

1.2 Scanner performance

Scanner performance has been consistent with previous operations and within required limits.

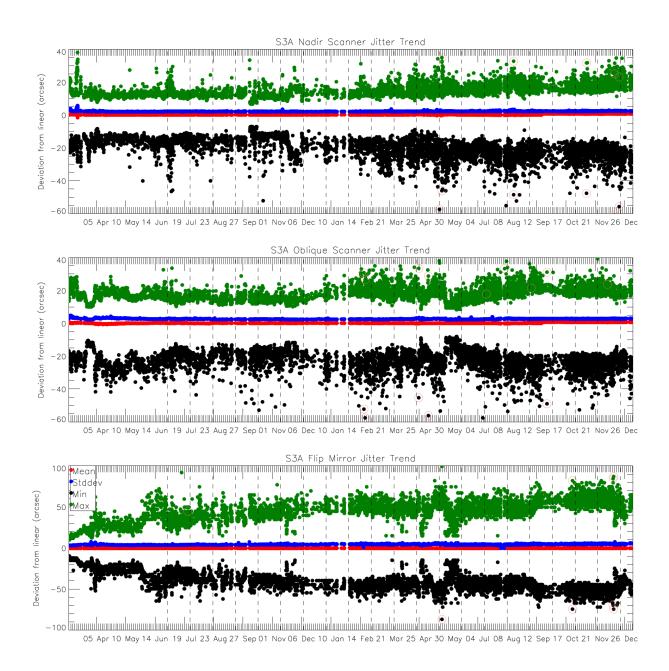


Figure 5: Scanner and flip jitter, showing mean, stddev and max/min position per orbit compared to the expected one for the nadir view. The vertical dashed lines indicate the start and end of each cycle.

SENTINEL 3 Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

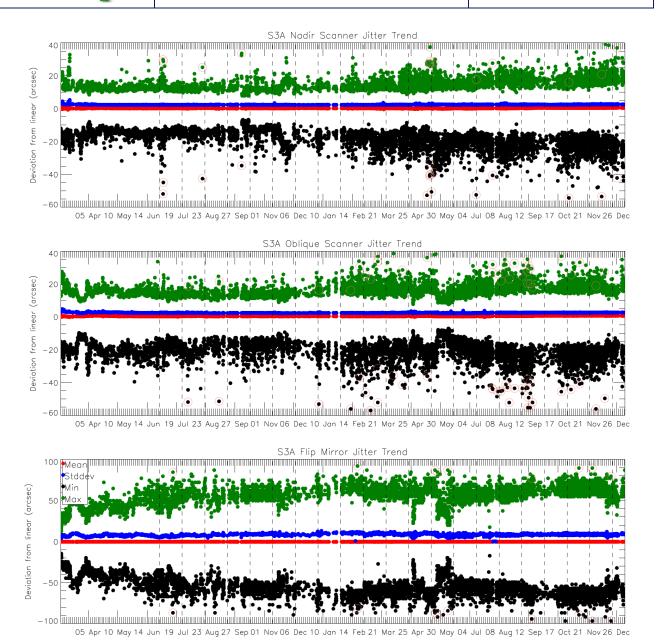


Figure 6: Scanner and flip jitter, showing mean, stddev and max/min position per orbit compared to the expected one for the oblique view. The vertical dashed lines indicate the start and end of each cycle.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 8

1.3 Detector noise levels

1.3.1 VIS and SWIR channel signal-to-noise

The VIS and SWIR channel noise was stable and consistent with previous operations - the signal-to-noise ratio of the measured VISCAL signal is plotted in Figure 7. Table 1 and Table 2 give the average signal-to-noise in each cycle (excluding the anomaly/decontamination period in Cycle 20). Note that this averages over the significant detector-detector dispersion for the SWIR channels that is shown in Figure 7.

Table 1: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycles 014-025, averaged over all detectors for the nadir view.

	Average	rage Nadir Signal-to-noise ratio											
	Reflectance	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle
	Factor	014	015	016	017	018	019	020	021	022	023	024	025
S1	0.187	217	224	233	234	231	230	232	230	232	234	235	234
S2	0.194	227	230	236	236	232	231	235	235	235	239	236	237
S3	0.190	221	230	236	238	228	231	229	231	229	234	232	234
S4	0.191	137	139	142	140	140	139	137	135	136	139	140	142
S5	0.193	234	233	233	235	236	234	232	232	229	236	236	235
S6	0.175	141	144	142	143	143	142	139	138	139	142	146	145

Table 2: Average reflectance factor, and signal-to-noise ratio of the measured VISCAL signal for cycles 014-025, averaged over all detectors for the oblique view.

	Average	Oblique Signal-to-noise ratio											
	Reflectance Factor	Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020	Cycle 021	Cycle 022	Cycle 023	Cycle 024	Cycle 025
S1	0.166	229	236	243	247	246	242	240	240	241	243	246	246
S2	0.170	232	241	248	251	249	247	246	245	246	253	249	251
S3	0.168	227	236	245	249	244	242	238	238	238	247	239	244
S4	0.166	107	108	108	111	110	109	108	108	108	110	111	111
S5	0.166	169	172	169	169	171	168	167	168	168	172	173	173
S6	0.155	106	107	109	109	110	108	106	108	107	111	110	113

Note that there may be very small differences in the average signal-to-noise values in Table 1 and Table 2 for recent cycles compared to previous Cyclic Reports because additional products may have been received from the MPC since those reports were published.

SENTINEL 3 Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

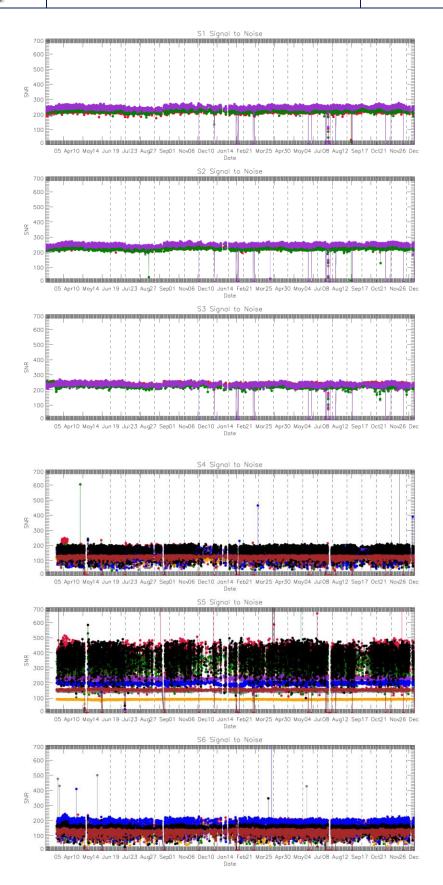


Figure 7: VIS and SWIR channel signal-to-noise of the measured VISCAL signal in each orbit. Different colours indicate different detectors.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue:

11/01/2018 Date:

Page: 10

TIR channel NEDT

The thermal channel NEDT values are consistent with previous operations and within the requirements. NEDT values for each cycle, averaged over all detectors and both Earth views, are shown in Table 3 and Table 4.

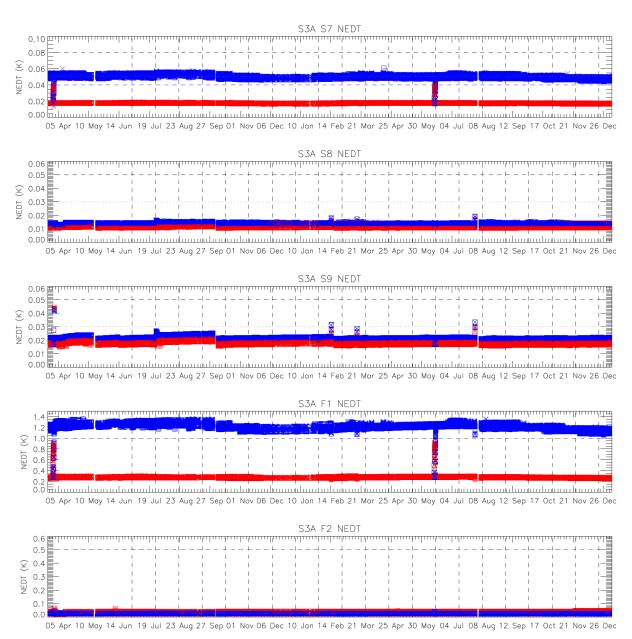


Figure 8: NEDT trend for the thermal channels. Blue points were calculated from the cold blackbody signal and red points from the hot blackbody. Horizontal lines indicate the requirement (dashed) and goal (dotted) as well as the measured values on ground (red and blue dashed).

SENTINEL 3 Mission Performance Contre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 11

Table 3: NEDT for cycles 014-025 averaged over all detectors for both Earth views towards the +YBB (hot).

		Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020	Cycle 021	Cycle 022	Cycle 023	Cycle 024	Cycle 025
+YBB t		303.206	302.674	302.544	302.541	302.593	302.385	302.395	302.316	302.466	303.125	303.515	303.871
	S7	16.8	16.9	17.2	17.2	18.1	17.2	17.2	17.1	17.2	16.9	16.8	16.7
NEDT	S8	11.1	11.0	10.9	11.0	11.1	11.0	11.1	10.9	10.9	10.9	10.8	10.8
NEDT (mK)	S9	17.9	17.6	17.0	17.2	17.5	17.4	17.5	16.7	16.9	17.0	17.1	17.1
(F1	260	260	268	271	297	276	276	269	270	265	265	263
	F2	28.0	27.9	27.6	27.8	27.8	27.8	27.8	27.4	27.6	27.7	27.9	28.0

Table 4: NEDT for cycles 014-025 averaged over all detectors for both Earth views towards the -YBB (cold).

				-									
		Cycle 014	Cycle 015	Cycle 016	Cycle 017	Cycle 018	Cycle 019	Cycle 020	Cycle 021	Cycle 022	Cycle 023	Cycle 024	Cycle 025
-YBB te		265.807	265.183	265.136	265.260	265.412	265.122	265.054	264.900	265.012	265.790	266.251	266.753
	S7	47.9	48.7	49.0	48.8	46.9	49.2	49.4	49.4	49.0	47.6	47.0	46.3
NEDT	S8	14.4	14.2	14.2	14.3	14.2	14.3	14.4	14.2	14.1	14.2	14.1	14.0
NEDT (mK)	S9	22.1	21.3	21.4	21.6	21.6	22.0	22.0	21.1	21.3	21.4	21.4	21.5
()	F1	1178	1222	1191	1199	1163	1231	1233	1212	1202	1161	1139	1124
	F2	29.6	29.2	29.3	29.3	29.4	29.6	29.7	29.2	29.2	29.3	29.3	29.2

Note that there may be very small differences in the average NEDT values in Table 3 and Table 4 for recent cycles compared to previous Cyclic Reports because additional products may have been received from the MPC since those reports were published.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue:

11/01/2018 Date:

12 Page:

Calibration factors

VIS and SWIR VISCAL signal response 1.4.1

Signals from the VISCAL source for the VIS channels show oscillations due to the build up of ice on the optical path within the FPA. Decontamination must be carried out periodically in order to warm up the FPA and remove the ice. The latest decontamination cycle was successfully performed at the end of Cycle 20. The VISCAL signal has behaved as expected following the decontamination.

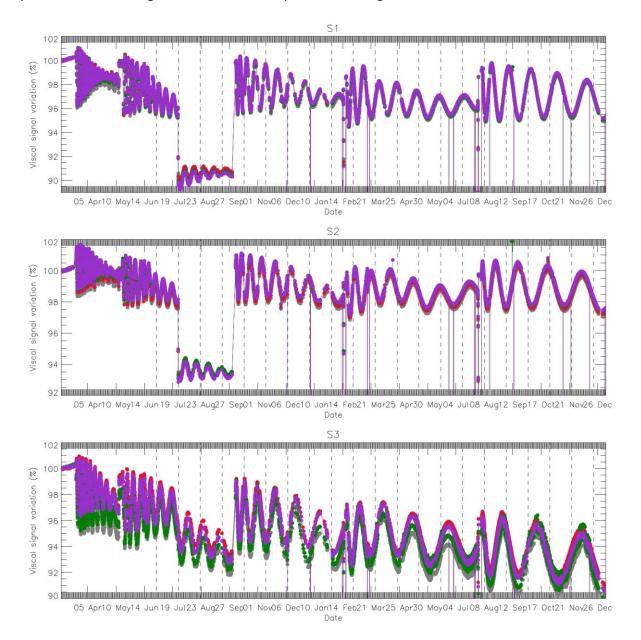


Figure 9: VISCAL signal trend for VIS channels (nadir view).

Mission Performance Centre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

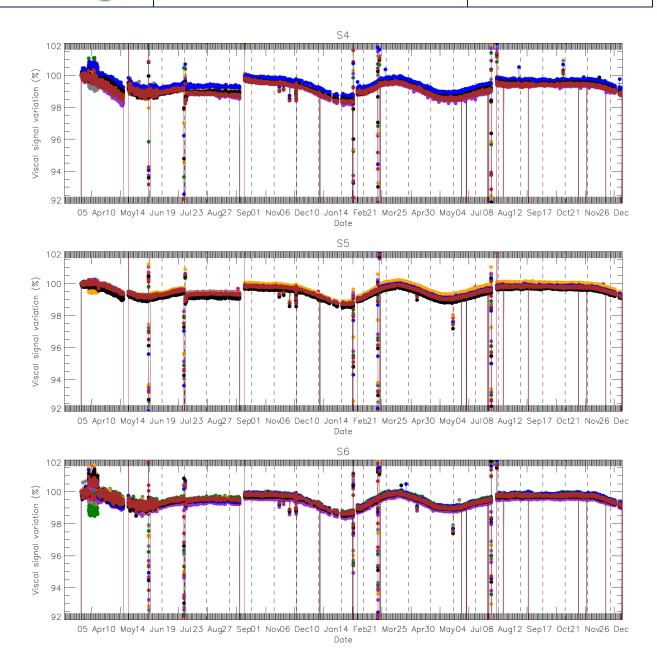


Figure 10: VISCAL signal trend for SWIR channels (nadir view).

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 14

2 Level-1 product validation

2.1 Geometric calibration/validation

Regular monitoring using the GeoCal Tool implemented at the MPC is being carried out. This monitors the geolocation performance in Level-1 images by correlation with ground control point (GCP) imagettes. Each Level-1 granule typically contains several hundred GCPs, which are filtered based on signal-to-noise to obtain a daily average in the across and along track directions. The results are plotted in Figure 11 up to the 4th December 2017, giving the average positional offsets in kilometres for Nadir and Oblique views. A comparison of Nadir and Oblique results shows that the offset difference between views has been gradually drifting. This will be carefully monitored to determine whether it is due to a seasonal drift or another effect.

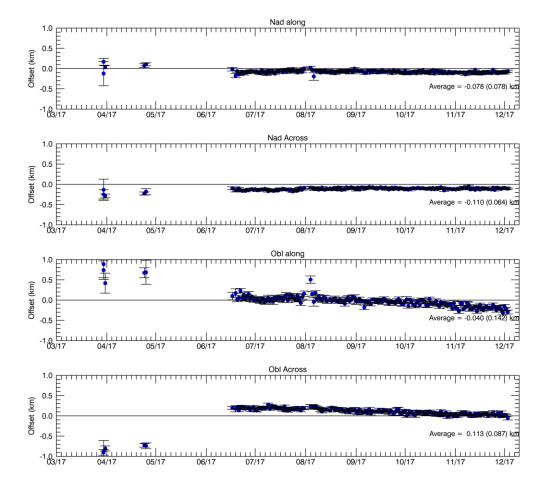


Figure 11: Daily offset results in km from the GeoCal Tool analysis for Nadir along and across track (top two plots) and Oblique along and across track (bottom two plots). The error bars show the standard deviation. The x-axis shows the date (month/year).

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 15

2.2 Radiometric validation

The radiometric calibration of the visible and SWIR channels is monitored using the S3ETRAC service. The S3ETRAC service extracts OLCI and SLSTR Level-1 data and computes associated statistics over 49 sites corresponding to different surface types (desert, snow, ocean maximising Rayleigh signal, and ocean maximising sunglint scattering). These S3ETRAC products are used for the assessment and monitoring of the VIS and SWIR radiometry by the ESL.

Details of the S3ETRAC/SLSTR statistics are provided on the S3ETRAC website http://s3etrac.acri.fr/index.php?action=generalstatistics#pageSLSTR

- Number of SLSTR products processed by the S3ETRAC service
- Statistics per type of target (DESERT, SNOW, RAYLEIGH, SUNGLINT)
- Statistics per site
- Statistics on the number of records

Analysis of S3ETRAC results for SLSTR radiometric validation is ongoing and will be presented in future cyclic reports.

2.3 Image quality

The Level-1 image quality is assessed when data are available at the MPC. For example by combining all granules over one day into a single Level-3 image. Figure 12 shows an example Level-3 image for the visible channels from 9th December 2017 (daytime only).

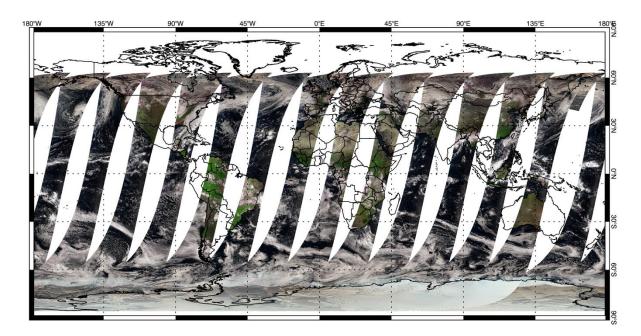


Figure 12: Daytime Level-3 image for visible channels on 9th December 2017.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 16

3 Level 2 SST validation

Level 2 WCT SSTs have been validated using CMEMS *in situ* data for Cycle 25. Match-ups between SLSTR and *in situ* data are provided by the EUMESAT OSI-SAF.

3.1 Dependence on latitude, TCWV, Satellite ZA and date

The dependence of the difference between SLSTR SST_{skin} and drifting buoy SST_{depth} for Cycle 25 is shown in Figure 13. No adjustments have been made for difference in depth or time between the satellite and in situ measurements. SLSTR SSTs are extracted from the SL_2_WCT files. Daytime 2-channel (S8 and S9) results are shown in red, night time 2-channel results are shown in blue and night time 3-channel results are shown in green. Solid lines indicate dual-view retrievals, dashed lines indicate nadir-only retrievals. Bold lines indicate statistically significant (95% confidence) results.

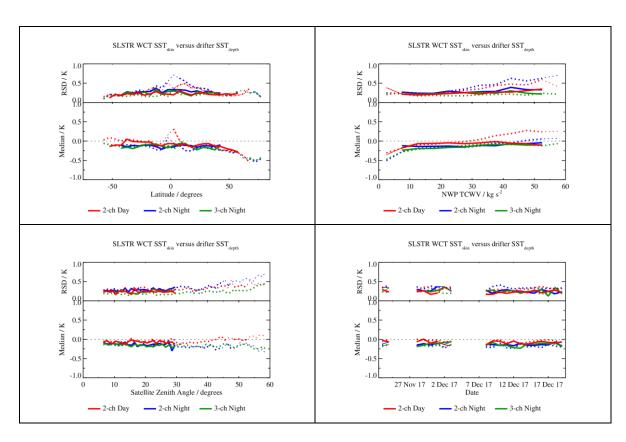


Figure 13: Dependence of median and robust standard deviation of match-ups between SLSTR SST_{skin} and drifting buoy SST_{depth} for Cycle 25 as a function of latitude, total column water vapour (TCWV), satellite zenith angle and date. The data gaps throughout the cycle are due to delays in match-up production.

SENTINEL 3 Mission Performance Contre

Sentinel-3 MPC

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 17

3.2 Spatial distribution of match-ups

The spatial distribution of SLSTR/drifter match-ups for Cycle 25 is shown in Error! Reference source not found. No adjustments have been made for difference in depth or time between the satellite and in situ measurements.

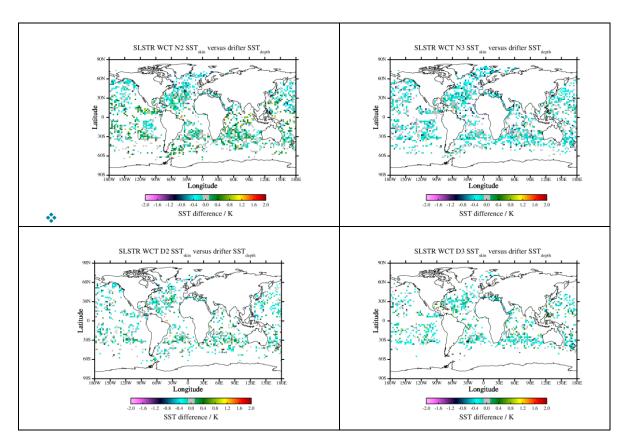


Figure 14: Spatial distribution of match-ups between SLSTR SST_{skin} and drifting buoy SST_{depth} for Cycle 25.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 18

3.3 Match-ups statistics

Match-ups statistics (median and robust standard deviation, RSD) of SLSTR/drifter match-ups for Cycle 25 are shown in Table 5. No adjustments have been made for difference in depth or time between the satellite and in situ measurements and so at night time (in the absence of diurnal warming) an offset of around -0.17 K is expected. The RSD values indicate SLSTR is providing SSTs mostly within its target accuracy (0.3 K).

Table 5: SLSTR drifter match-up statistics for Cycle 25.

Retrieval	Number	Median (K)	RSD (K)
N2 day	5930	-0.04	0.32
D2 day	2728	-0.07	0.23
N2 night	6641	-0.17	0.34
N3 night	6641	-0.16	0.21
D2 night	2470	-0.12	0.28
D3 night	2470	-0.15	0.25

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 19

4 Level 2 LST validation

Level 2 Land Surface Temperature products have been validated against *in situ* observations (Category-A validation), and intercompared (Category-C validation) with respect to three independent reference products from the ESA DUE GlobTemperature Project (MODIS, GOES, and SEVIRI).

4.1 Category-A validation

Category-A validation uses a comparison of satellite-retrieved LST with *in situ* measurements collected from radiometers sited at a number of stations spread across the Earth, for which the highest-quality validation can be achieved. The results can be summarised as follows (see Figure 15 and Figure 16):

Average absolute accuracy (vs. Gold Standard):

o Daytime: 0.81K

Night-time: 1.07K

This daytime accuracy meets the mission requirement of < 1K. The night-time accuracy is very close to this mission requirement. This also is in line with the GCOS climate requirements of 1 K accuracy.

Average precision (vs. Gold Standard):

Daytime: 0.72K

Night-time: 1.21K

While there is no Sentinel-3 mission requirement for precision, the daytime precision meets the GCOS climate requirement of 1K. The night-time accuracy is also very close to this climate requirement.

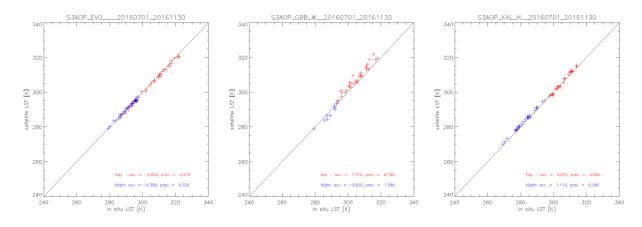


Figure 15: Validation of the SL_2_LST product over the mid-July to mid-November reprocessed period at three Gold Standard in situ stations managed by the Karlsruhe Institute of Technology: Evora, Portugal (left); Gobabeb, Namibia (centre); Kalahari-Heimat, Namibia (right). [Results courtesy of Maria Martin through the GlobTemperature Project]

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

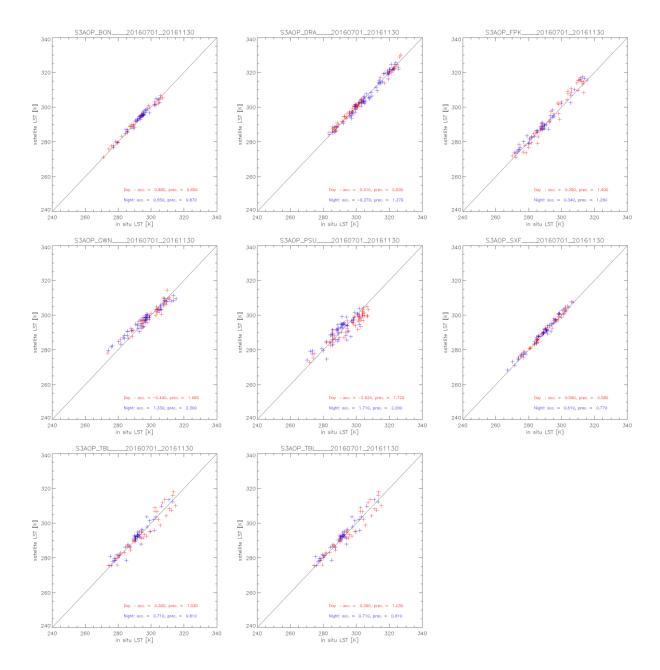


Figure 16: Validation of the SL_2_LST product over the mid-July to mid-November reprocessed period at the seven Gold Standard in situ stations of the SURFRAD network plus a Gold Standard station from the ARM network: Bondville, Illinois top-(left); Desert Rock, Nevada (top-centre); Fort Peck, Montana (top-right); Goodwin Creek, Mississippi (middle-left); Penn State University, Pennsylvania (middle-centre); Sioux Fall, South Dakota (middle-right); Table Mountain, Colorado (bottom-left); and Southern Great Plains, Oklahoma (bottom-centre).

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 21

4.2 Category-C validation

Category-C validation uses inter-comparisons with similar LST products from other sources such as AATSR, AVHRR, MODIS, SEVIRI, and VIIRS, which give important quality information with respect to spatial patterns in LST deviations. The results can be summarised as follows:

- ❖ Daytime intercomparison differences are: ~1K vs. GOES__LST_2 over North America; ~1K vs. SEVIR_LST_2 over Europe; and < 1K vs. MOGSV_LST_2 on a Global basis.</p>
- Night-time intercomparison differences are: <1K vs. GOES__LST_2 over North America; <1K vs. SEVIR_LST_2 over Europe; and < 1K vs. MOGSV_LST_2 on a Global basis.
- Differences with respect to biomes tend to be larger during the day for surfaces with more heterogeneity and/or higher solar insolation. With respect to SLSTR zenith viewing angle differences are larger in the day on the left side of the SLSTR swath in the along-track direction.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 22

5 Events

SLSTR was switched on and operating nominally during the cycle, with SUE scanning and autonomous switching between day and night modes.

However, there were several events interrupting the supply of processed data:

- A routine satellite manoeuvre was carried out between 09:13 and 09:26 on 29th November 2017, affecting both L1 and L2 products. In addition to this, a bug in the Level-1 processor triggered by the manoeuvre caused missing L1 and L2 products over a longer period (09:08 to 10:59). Aside from the actual manoeuvre, the other data should be available once the bug has been fixed in a subsequent version of the processor.
- A second manoeuvre was performed on 13th December 2017. The processor bug mentioned above caused data products to be missing between 07:54 and 09:55.

S3-A SLSTR Cyclic Performance Report

Cycle No. 025

Ref.: S3MPC.RAL.PR.02-025

Issue: 1.0

Date: 11/01/2018

Page: 23

6 Appendix A

Other reports related to the Optical mission are:

S3-A OLCI Cyclic Performance Report, Cycle No. 025 (ref. S3MPC.ACR.PR.01-025)

All Cyclic Performance Reports are available on MPC pages in Sentinel Online website, at: https://sentinel.esa.int

End of document