Sentinel-5 Precursor Level 2
UPAS Processor

Input / Output Definition Document

Doc. ID SSP-L2-DLR-IODD-3002
Issue 3.4.0
Date 2019-02-20

- Restricted: Project Internal -
 Background Intellectual Property – Proprietary Information
 Level 2
 Class A

Remote Sensing Technology Institute (DLR-IMF)

© Restriction of Disclosure: All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in written form by the German Aerospace Center (DLR).
Table of Signatures

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared: S5P L2 Software Engineer</td>
<td>Fabian Romahn</td>
</tr>
</tbody>
</table>
| | Digitally signed by Fabian Romahn
| | DN: C=DE, S=Bavaria, O=DLR, OU=IMF-ATP, CN=Fabian Romahn, E=Fabian.Romahn@dlr.de
| | Reason: I am approving this document
| | Location: Date: 2019-02-25 10:22:32
| | Foxit PhantomPDF Version: 9.3.0 |
| **Contributors:** | |
| | |
| **Reviewed:** S5P L2 CM | Pascal Hedelt |
| | Digitally signed by Pascal Hedelt
| | DN: C=DE, S=Bavaria, O=DLR, OU=IMF-ATP, CN=Pascal Hedelt, E=pascal.hedelt@dlr.de
| | Reason: I have reviewed this document
| | Location: Date: 2019-02-25 13:49:06
| | Foxit PhantomPDF Version: 9.3.0 |
| **Approved:** | |
| S5P L2 Project Manager | Diego Loyola |
| | Digitally signed by Diego Loyola
| | DN: C=DE, S=Bayern, O=German Aerospace Center (DLR), CN=Diego Loyola, E=Diego.Loyola@dlr.de
| | Reason: I am the author of this document
| | Location: Date: 2019-02-28 11:51:57
| | Foxit PhantomPDF Version: 9.3.0 |
CHANGE RECORD

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Chapter</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2012-09-18</td>
<td>All</td>
<td>Completely new</td>
</tr>
<tr>
<td>0.2</td>
<td>2012-11-23</td>
<td>All</td>
<td>Entire document revised</td>
</tr>
<tr>
<td>0.3</td>
<td>2012-12-20</td>
<td>All</td>
<td>Entire document revised based on L1 input data information provided by KNMI in December 2012</td>
</tr>
</tbody>
</table>
| 0.4 | 2013-03-29| a) All, especially Chapter 2
b) Sec. 2.2.3 updated | a) Document revised according to SRR/PDR review of February 2013.
b) Auxiliary data in Sec. 2.2.3 updated following S5P GS-PDR ERID - Actions 34493 and 35403 |
| 0.4/0.5.1 | 2013-07-12 | a) Chapter 2 updated according to RIDs with reference L2IO_D-HN-03 and L2IO_D-HN-04
b) Chapter 3
c) All | a) Added specific information concerning I/O data required by different modalities (Near Real Time, Offline) as well as detailed workflows.
b) Chapter changed based on newest information about L1b input product and PDGS JobOrder file. In addition, further information about L2 data and logging syntax have been provided.
c) Document revised. |
| 0.5.2 | 2013-11-20| Chapter 2.9.1 (L2 structure) and 2.9.1.1 (Metadata) | Highlight that the L2 netCDF-4 structure and metadata is being jointly defined between KNMI and DLR. |
| 0.6.0 | 2013-12-13| All | Document updated accordingly to the latest versions of the documentations in the S5P framework. |
| 0.6.1 | 2014-01-24| All | Redefinition of L3 product |
| 1.0.0 | 2014-05-12| a) Chapter 2.8.3.2 (TMS)
b) Chapter 2.9 (L2 Output)
c) Chapter 1.3 (References)
d) Table 7 (Aux)
e) Figure 8 and Figure 9
f) All | a) Added more technical details on TMS model
b) Removed sections of L2 Metadata and L2 output structure
c) References updated
d) Table of auxiliary inputs restructured
e) Redrawn UPAS-L2 NRTI/OFFL diagrams
f) Document entirely revised based on an informal review from Snoop (KNMI) |
| 1.2.0 | 2014-10-14| a) All
b) AUX data sections 2.8.3.1 and 2.8.3.2
c) Sections 1.3.2 and 2.9.1
d) Added section 2.8.4
e) Sec 2.8.3
f) All
g) Sec. 2.6.3 and Sec. 3.2.2.6 | a) UPAS-L2 processor needs ECMWF auxiliary data according to the last version of the ATBD. Document is then updated with this information.
b) Identifiers for AUX data have been harmonized with [AD07] and KNMI IODD. RIDs L2 CDR #3 and #4 solved.
c) Precise information about PUMs references has been added. RID L2 CDR #6 solved.
d) Added section explaining fail-back strategy in case of missing/corruption of aux dynamic data. RIDs L2 CDR #15 and #2 solved.
e) Clarification about functionality in order to have one product at a time. Optimum set of aux data is the one reported. RID L2 CDR #14 and #16 solved.
f) L3 O3 tropospheric renamed as L2c product. RID #41769 of GS CDR solved.
g) Information about size and validity of background correction added. RIDs #12 and #13 of the L2 CDR solved. |
| 2.0.0 | 2015-03-09| a) Applicable / Reference documents
b) All
c) Section ECMWF
d) Table 13
e) All | a) Updated
b) Modes (NRTI, OFFL, RPRO) changed accordingly to the S5p ESA tailoring SSP-TN-ESA-GS-106)
c) Added description of ECMWF
d) Updated references to L1b data type – Added L2__AER_AI as aux product
e) Document revised |
| 3.0.0 | 2015-12-15| a) All
b) Applicable / Reference documents
c) Auxiliary data Chapter 2.8.3
d) Intermediate output of upas-l2c Chapter 2.5
e) Intermediate output of upas-bc Chapter 2.6 | a) Changes are red marked.
b) Updated
c) Updated with detailed information about selection rules as described in [AD05]
d) Selection rules updated
e) Section updated with new flowcharts and selection rules concerning this type of data |
<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3.0.1 | 2016-03-31 | a) All
| | | b) Table 7
| | | f) Table 7
| | | g) Chapter 3 (Detailed I/O)
| | | h) Appendix A and B
| | | f) It considers the PDGS scenario
| | | g)
| | | - L1b information updated
| | | - L2 output sizes updated base on the new binning scheme proposed in October 2015
| | | - Sub-section added explaining useful attribute flags added in the L2 product in order to understand which input where available while processing
| | | h) Added two new Appendixes containing the main structure of the netCDF-4 files of AUX_BGHCHO and AUX_BGSO2_intermediate outputs
| 3.1.0 | 2016-11-15 | a) upas-bc Chapter 2.6
| | | b) Appendix A and B
| | | a) Added new interface for upas-bc processor that ingests L1b in order to compute the earthshine spectra.
| | | b) Updated with the last file format definition
| 3.3.0 | 2017-06-01 | a) Applicable / Reference documents
| | | b) Chapter 3 (detailed I/O)
| | | c) All
| | | a) Updated
| | | b) Data size and spec updated with the last version L1B IODD 7.0.0
| | | c) Minor changes
| 3.4.0 | 2019-02-20 | a) Applicable / Reference documents
| | | b) Table 7
| | | c) Chapters 2.6.3, 2.8
| | | a) Added the PDGS Selection rules document to the applicable documents
| | | b) Updated the table according to be consistent with the newest PDGS Auxiliary Product Selection Rules
| | | c) Updated the selection rules

TABLE OF CONTENTS

Table of Signatures ... 3

1. Introduction .. 12
 1.1 Purpose ... 12
 1.2 Scope ... 12
 1.3 References ... 12
 1.3.1 Applicable Documents ... 12
 1.3.2 Reference Documents ... 12
 1.3.3 Electronic references ... 13
 1.4 Terms and Abbreviations ... 14
 1.4.1 Terms ... 14
 1.4.2 Abbreviations ... 14
 1.5 Document Overview .. 14

2. SSP UPAS processor overview .. 15
 2.1 High-level overview of S5P UPAS processor .. 15
 2.2 SSP UPAS processor architecture and modes ... 15
 2.3 Principal blocks involved in S5P UPAS processor ... 16
 2.4 upas-l2 : I/O and modalities ... 16
 2.4.1 NRTI ... 16
 2.4.2 OFFL/RPRO .. 17
 2.5 upas-l2c : I/O and modalities ... 17
 2.5.1 NRTI ... 18
 2.5.2 OFFL/RPRO .. 18
 2.6 upas-bc : I/O and modalities ... 18
 2.6.1 NRTI ... 18
 2.6.2 OFFL/RPRO .. 19
 2.6.3 Selection rules of the Intermediate Output (AUX_BGHCHO and BG_BGS02) 19
 2.7 UpasPsmAdapter: Workflow and role ... 20
 2.7.1 Testing modality ... 20
 2.7.2 Multi-Core scheme ... 20
 2.8 Input Data ... 20
 2.8.1 L1b Product .. 21
 2.8.2 Input Configurations ... 21
 2.8.2.1 PDGS Configuration ... 21
 2.8.2.2 UPAS Internal Configuration .. 21
 2.8.2.3 UPAS static data .. 22
 2.8.3 Auxiliary Data .. 22
 2.8.3.1 Snow/Ice Data (AUX_NISE) .. 23
 2.8.3.2 Chemistry Transport Model (AUX_CTMFCT and AUX_CTMANA) 24
 2.8.3.3 ECMWF meteo file (AUX_MET_TP, AUX_MET_QP, AUX_MET_2D) 25
 2.8.4 Fall-back solutions ... 26
 2.9 Output Data .. 26
 2.9.1 L2 Products .. 26
 2.9.1.1 L2 Metadata .. 26
 2.9.2 Logging Messages .. 27
 2.9.3 Exit Code .. 27

3. Detailed I/O Data Format .. 28
 3.1 List of I/O Files Employed ... 28
 3.2 File Definition ... 29
 3.2.1 Input Files .. 30
 3.2.1.1 PDGS Configuration ... 30
 3.2.1.2 L1b Irradiance Product UVN (L1B_IR_UVN) ... 31
3.2.1.3 L1b Radiance Product UV band 1 [270-300 nm] (L1B_RA_BD1) .. 32
3.2.1.4 L1b Radiance Product UV band 2 [300-320 nm] (L1B_RA_BD2) ... 33
3.2.1.5 L1b Radiance Product UVIS band 3 [310-405 nm] (L1B_RA_BD3) .. 34
3.2.1.6 L1b Radiance Product UVIS band 4 [405-500 nm] (L1B_RA_BD4) ... 35
3.2.1.7 L1b Radiance Product NIR band 5 [675-725 nm] (L1B_RA_BD5) .. 36
3.2.1.8 L1b Radiance Product NIR band 6 [725-775 nm] (L1B_RA_BD6) .. 37
3.2.1.9 Snow/Ice Data (AUX_NISE__) .. 38
3.2.1.10 TM5 Model Data (AUX_CTMFCT and AUX_CTMANA) .. 39
3.2.1.11 ECMWF forecast data (AUX_MET_2D, AUX_MET_TP, AUX_MET_QP) 40
3.2.1.12 Aerosol Index (L2__AER_AI) ... 41
3.2.2 Output Files ... 42
3.2.2.1 L2 \(\text{O}_3\) total column (L2__O3__) .. 42
3.2.2.2 L2c \(\text{O}_3\) tropospheric column (L2__O3_TCL) .. 43
3.2.2.3 L2 \(\text{SO}_2\) (L2__SO2__) .. 44
3.2.2.4 L2 HCHO (L2__HCHO__) .. 45
3.2.2.5 L2 Clouds (L2__CLOUD__) .. 46
3.2.2.6 Background Correction (AUX_BGSO2 and AUX_BGHCHO) 47
3.2.2.7 Logging Messages ... 48

A. Appendix .. 50
B. Appendix .. 53
LIST OF FIGURES

Figure 1: Schema of I/O files and different modes of S5P UPAS processor ... 15
Figure 2: The four principal blocks belonging to S5P UPAS system .. 16
Figure 3: upas-l2 processor working in NRTI modality .. 17
Figure 4: upas-l2 processor working in OFFL modality ... 17
Figure 5: upas-l2c processor working in NRTI modality .. 18
Figure 6: upas-l2c processor working in OFFL/RPRO modalities .. 18
Figure 7: upas-bc processor working in NRTI modality for SO2 case ... 19
Figure 8: upas-bc processor working in NRTI modality for HCHO case ... 19
Figure 9: upas-bc processor working in OFFL modality for SO2 case ... 19
Figure 10: upas-bc processor working in OFFL modality for HCHO case ... 19
Figure 11: UpasPsmAdapter processor .. 20

LIST OF TABLES

Table 1: Applicable Documents .. 12
Table 2: Reference Documents .. 13
Table 3: Electronic references ... 13
Table 4: Terms ... 14
Table 5: Abbreviations ... 14
Table 6: Spectral bands, spectral range and relative products of TROPOMI instrument ... 21
Table 7: L2 products and their respective input data ... 22
Table 8: File name conventions of NISE ancillary data .. 23
Table 9: File name conventions of TM5 ancillary data ... 23
Table 10: TM5 Data Volume ... 24
Table 11: ECMWF Data Volume after the conversion to netCDF-4 ... 25
Table 12: Involved I/O files of the processor .. 29
Table 13: Schema of I/O files and different modes of S5P UPAS L2 processor ... 49
1. Introduction

1.1 Purpose

The purpose of the Input / Output Data Definition document (IODD) is to provide a precise description of the input and output files as used and generated by the L2 UPAS processor for the Sentinel-5 Precursor.

1.2 Scope

This document is part of the Sentinel-5 Precursor L2 Project. The sections presented here describe the S5P Level 1 and auxiliary (input data) as well as the S5P Level 2 (output data) products that are employed and generated by the UPAS processor, respectively. The descriptions of the algorithms used to generate the output products (i.e., \(\text{O}_3 \) total column, \(\text{O}_5 \) tropospheric column, \(\text{SO}_2 \), \(\text{HCHO} \), Clouds) are addressed in the corresponding ATBD document.

1.3 References

1.3.1 Applicable Documents

The following project documents contain provisions which, through reference in this text, become applicable to the extent specified in this document.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document ID</th>
<th>Issue</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AD01] Sentinel-5 Precursor L2 Processor Software System Requirements</td>
<td>S5P-L2-DLR-SSR-3001</td>
<td>1.2</td>
<td>2015-11-30</td>
</tr>
<tr>
<td>[AD02] Input output data specification for TROPOMI L01b data processor</td>
<td>SSP-KNMI-L01b-0012-SD</td>
<td>7.0.0</td>
<td>2016-09-30</td>
</tr>
<tr>
<td>[AD03] SSP Level 2 Processor Development – Statement of Work</td>
<td>S5P-SW-ESA-GS-053</td>
<td>1.0</td>
<td>2012-03-02</td>
</tr>
<tr>
<td>[AD05] Generic IPF Interface Specification</td>
<td>MMFI-GSEG-EOPG-TN-07-0003</td>
<td>1.8</td>
<td>2009-08-03</td>
</tr>
<tr>
<td>[AD06] GS Requirements Document</td>
<td>S5P-RS-ESA-GS-092</td>
<td>1.0</td>
<td>2013-02-18</td>
</tr>
<tr>
<td>[AD08] Sentinel-5 Precursor L2 UPAS Processor – Software User Manual</td>
<td>S5P-L2-DLR-SUM-3005</td>
<td>00.11.00</td>
<td>2016-11-15</td>
</tr>
<tr>
<td>[AD09] Sentinel-5 Precursor L2 UPAS Processor – External ICD</td>
<td>S5P-L2-DLR-ICD-3003</td>
<td>1.0.0</td>
<td>2017-06-01</td>
</tr>
<tr>
<td>[AD11] Sentinel-5 Precursor PDGS Processor Generic ICD</td>
<td>S5P-PDGS-DLR-ICD-3015</td>
<td>1.0dr2</td>
<td>2014-07-31</td>
</tr>
</tbody>
</table>

Table 1: Applicable Documents

1.3.2 Reference Documents

The following standards or documents are referenced in this document. They have been used (in the sense of tailoring) to prepare the document on hand. Documents which are recognised best practices may be listed for the purpose of information.

<table>
<thead>
<tr>
<th>Title</th>
<th>Document ID/Reference</th>
<th>Issue</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RD01] Sentinel-5P Level 2 Processor Requirements Specifications</td>
<td>S5P-RS-ESA-GS-054</td>
<td>1.0</td>
<td>2012-03-02</td>
</tr>
<tr>
<td>[RD02] Sentinel-5 Precursor L2 UPAS Processor – Software Development Plan</td>
<td>S5P-L2-DLR-SDP-1007</td>
<td>1.0</td>
<td>2012-08-13</td>
</tr>
</tbody>
</table>
Title: Electronic references

The following electronic links are referenced in this document.

<table>
<thead>
<tr>
<th>Page Title</th>
<th>URL</th>
<th>Date visited</th>
<th>Issue</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ER02] The Transport-Chemistry model TM5</td>
<td>http://www.projects.science.uu.nl/tm5/</td>
<td>2013-03-29</td>
<td>3.4.0</td>
<td>2019-02-20</td>
</tr>
<tr>
<td>[ER05] BUFR format</td>
<td>http://www.ecmwf.int/products/data/software/bufr.html</td>
<td>2013-04-19</td>
<td>3.4.0</td>
<td>2019-02-20</td>
</tr>
<tr>
<td>[ER08] ECMWF forecast data</td>
<td>http://www.ecmwf.int</td>
<td>2014-10-01</td>
<td>3.4.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Reference Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Document ID/Reference</th>
<th>Issue</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RD04]</td>
<td>Sentinel 5-precursor/TROPOMI KNMI and SRON L2 Input Output Data Definition</td>
<td>4.0</td>
<td>2015-10-30</td>
</tr>
<tr>
<td>[RD05]</td>
<td>S5P/TROPOMI Static input for L2 processors</td>
<td>3.1</td>
<td>2016-03-21</td>
</tr>
<tr>
<td>[RD06]</td>
<td>S5P PDGS TMS Auxiliary Data Provider ICD</td>
<td>1.0</td>
<td>2014-07-30</td>
</tr>
<tr>
<td>[RD07]</td>
<td>S5P PDGS NISE Auxiliary Data Provider ICD</td>
<td>1.0</td>
<td>2014-07-30</td>
</tr>
<tr>
<td>[RD08]</td>
<td>S5P PDGS ECMWF Auxiliary Data Provider ICD</td>
<td>1.0</td>
<td>2015-02-25</td>
</tr>
<tr>
<td>[RD09]</td>
<td>ISO Geographic information – Metadata.</td>
<td>1.0</td>
<td>2003-05-01</td>
</tr>
<tr>
<td>[RD10]</td>
<td>ISO Geographic information – Metadata – Part 2: Extensions for imagery and gridded data.</td>
<td>1.0</td>
<td>2009-02-12</td>
</tr>
<tr>
<td>[RD12]</td>
<td>Earth Observation Metadata profile of Observations & Measurements.</td>
<td>1.0</td>
<td>2012-06-12</td>
</tr>
<tr>
<td>[RD18]</td>
<td>S5p L2 File Format Guidelines</td>
<td>0.05</td>
<td>2015-12-18</td>
</tr>
</tbody>
</table>
1.4 Terms and Abbreviations

1.4.1 Terms

As far as possible the technical terms used in reference documents have been reused. It is assumed that the reader is familiar with the technical terms used in the domain of EO missions and payload data ground segments. Terms with potentially ambiguous meaning are defined here with their meaning applied in the scope of this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA</td>
<td>to be added in agreement with the European Space Agency (ESA)</td>
</tr>
<tr>
<td>TBC</td>
<td>to be confirmed in agreement with the European Space Agency (ESA)</td>
</tr>
<tr>
<td>TBD</td>
<td>to be defined in agreement with the European Space Agency (ESA)</td>
</tr>
</tbody>
</table>

Table 4: Terms

1.4.2 Abbreviations

Abbreviations used in this document are listed next.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
</tr>
<tr>
<td>EOC</td>
<td>Earth Observation Center</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>GS</td>
<td>Ground Segment</td>
</tr>
<tr>
<td>KNMI</td>
<td>Koninklijk Nederlands Meteorologisch Instituut</td>
</tr>
<tr>
<td>I/O</td>
<td>Input / Output</td>
</tr>
<tr>
<td>IODD</td>
<td>Input / Output Data Definition</td>
</tr>
<tr>
<td>L0</td>
<td>Level 0 Product</td>
</tr>
<tr>
<td>L1b</td>
<td>Level 1 b Product</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2 Product</td>
</tr>
<tr>
<td>NRTI</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>OFFL</td>
<td>Offline</td>
</tr>
<tr>
<td>PDGS</td>
<td>Payload Data Ground Segment</td>
</tr>
<tr>
<td>RPRO</td>
<td>Reprocessing</td>
</tr>
<tr>
<td>S5P</td>
<td>Sentinel-5 Precursor</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>UPAS</td>
<td>Universal Processor for UV/VIS Atmospheric Spectrometers</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>

Table 5: Abbreviations

1.5 Document Overview

The document is organized as follows: Chapter 1 outlines the purpose of this document and lists the references that have been used for creating this document. Chapter 2 then gives an overview about the involved input/output data as well as a high-level description of the S5P UPAS architecture. Afterwards, the I/O data formats and definition for each I/O file are presented in greater detail in Chapter 3.
2. **S5P UPAS processor overview**

This chapter gives an overview of all the involved I/O files accounted from the processor and aims to show specific workflows of S5P UPAS processor for different modalities and purposes. High level structure of S5P UPAS processor is dealt in Section 2.1. Architecture and modality of S5P UPAS processor are shown in Section 2.2. Specific workflows concerning different modalities are rather addressed in Sections 2.4, 2.5 and 2.6.

![Diagram of I/O files and different modes of S5P UPAS processor](image)

Figure 1: Schema of I/O files and different modes of S5P UPAS processor

2.1 High-level overview of S5P UPAS processor

Figure 1 shows the architecture of S5P UPAS processor concerning its different modalities and the involved I/O files. It is a high-level workflow very general that helps to understand what might be the inputs (green blobs) and the outputs (orange blobs) of the S5P UPAS drawn in the middle of the chart. The modalities the processor can adapt are labelled in dark blue and they are discussed further in the next sections. Internal configuration and static data (such as cross-sections used etc.) take place internally of the S5P UPAS processor.

2.2 S5P UPAS processor architecture and modes

S5P UPAS processor shall work in three different operational modes, i.e.:

1. NRTI Processing (NRTI)
2. Offline Processing (OFFL)
3. Reprocessing (RPRO)

Regarding the NRTI Processing, the L2 NRTI products are derived from the L1b NRTI products. A pipeline strategy processing is implemented in order to speed up the processing system (see Section 2.3.2 in
[RD01]). The L0 product is divided in small data units which are sent in the processing and disseminating chain: in this way the L0, L1 and L2 processors can start to work in parallel maximizing the efficiency of the process.

Concerning the OFFL mode, the processor generates L2 OFFL product based on the consolidated L1b orbit products.

Finally, Reprocessing modality (RPRO) works as the same as OFFL mode, but it affects the whole data available since the S5P mission had started. The purpose of this task is to reprocess all the acquired orbits with the more updated version of S5P UPAS processor, L1b products and auxiliary data. The RPRO mode is designed with the aim of maximizing the total throughput.

Furthermore, the processor can ingest both full orbits and slices as indicated by the PDGS configuration.

It is worth noting that the scheme given in Figure 1 is a very high-level architecture aiming at showing independently from the operational modalities what S5P UPAS ingests as inputs and which outputs returns. Detailed workflows are given in the following sections of the document.

2.3 Principal blocks involved in S5P UPAS processor

The entire system might be divided in four most relevant modules as Figure 2 shows. The following bullets list gives explanation of role and goal of each block.

- upas-l2: It is the core of the S5P UPAS system since it is responsible to generate S5P L2 products, i.e., O₃ total column, SO₂, HCHO, Clouds. Specific workflows for OFFL/NRTI modalities accounting I/O data involved are extensively explained in Section 2.4.
- upas-l2c: It generates daily a global coverage of O₃ tropospheric column. Specific workflows for OFFL/NRTI modalities accounting I/O data involved are extensively explained in Section 2.5.
- upas-bc: It computes daily intermediate output as background correction used for L2 HCHO and L2 SO₂ products. Specific workflows for OFFL/NRTI modalities accounting I/O data involved are extensively explained in Section 2.6.
- UpasPsmAdapter: it is the interface between PDGS and the three blocks previously explained (upas-l2, upas-l2c and upas-bc). Specific workflow is extensively explained in Section 2.7.

![Figure 2: The four principal blocks belonging to S5P UPAS system](image)

2.4 upas-l2: I/O and modalities

The section leads to upas-l2 processor and it is divided in two parts based on the modality adapted by S5P UPAS processor, i.e., NRTI and OFFL/RPRO. In each modality the processor may be configured in two ways: First mode, compute internally the Clouds product. Second mode, ingest as input a L2 Clouds already generated before. This makes the system more flexible and it meets every PDGS needs. Specific information about content of NRTI products might be found in each respective ATBD.

2.4.1 NRTI

In Figure 3 the workflow of upas-l2 working in NRTI mode is reported. Background Correction DB NRTI is computed once a day by upas-bc processor. Refer to Section 2.6 for more details concerning this input. L2 Product such as O₃ total column, SO₂ and HCHO need Clouds in order to be generated. This might be done internally or by giving L2 Clouds as input to the processor.
2.4.2 OFFL/RPRO

The workflow presented in Figure 4 differs from NRTI case in I/O prospective only with the addition of L2 Aerosol Index as auxiliary data used to flag the L2 SO$_2$ and L2 HCHO products. Beside this, the input such as background correction input data is also an OFFL/RPRO data as better detailed in Section 2.6.

2.5 \textit{upas-l2c}: I/O and modalities

The section leads to Upas-L2c processor and no differences are reported for NRTI and OFFL/RPRO case concerning I/O data involved but only regarding type of data content.
2.5.1 **NRTI**

The chart shown in Figure 5 and Figure 6 and represent the I/O data involved for the generation of O₃ tropospheric product. Inputs are a set of L2 O₃ total column products (L₂ₒ₃__) covering a certain time windows defined to 6 days in the past, i.e., “ValIntersect” policy with Δₜ₀ = 6 days and Δₜ₁ = 0.

![Figure 5: upas-l2c processor working in NRTI modality.](image)

2.5.2 **OFFL/RPRO**

The same assumptions of the NRTI case apply also to the OFFL processing chain.

![Figure 6: upas-l2c processor working in OFFL/RPRO modalities.](image)

2.6 **upas-bc : I/O and modalities**

The section leads to upas-bc processor and it is divided in two parts based on the modality driven by UpasFsmAdapter, i.e., NRTI and OFFL/RPRO.

2.6.1 **NRTI**

upas-bc computes once a day intermediate output as background correction (AUX_BGHCHO and AUX_BGSO₂__). A set of L2 SO₂ (L₂_SO₂__) and L2 HCHO (L₂_HCHO__) data are used as input to the processor in order to generate background correction data for SO₂ and HCHO products, respectively. The generated data is then used for processing the L2 SO₂ and L2 HCHO product of the next day. The BC product is gridded in a L3 grid and it has global world coverage. In NRTI case, the time window of L2 data needed in order to compute the background correction is set to a coverage of 14 days in the past, i.e., “ValIntersect” policy with Δₜ₀ = 14 days and Δₜ₁ = 0. The upas-bc background processor has the option to ingest S5P L1b RA BD3 data in order to compute earthshine spectrum that will be computed and written in the background correction file. This is an optional modality that it allows upas-l2 to use the earthshine spectra instead of solar spectra while retrieving SO₂__ and HCHO__ L2 products. The area taken into account is currently set as follows:

- HCHO__ : -5.0 < latitude < 5.0 ; -180.0 < longitude < -120.0
- SO₂__ : -10.0 < latitude < 10.0 ; 160.0 < longitude < -120.0
2.6.2 OFFL/RPRO

The same assumptions of the NRTI case apply also to the OFFL processing chain. The time window of L2 data is as in NRTI case 14 days coverage. However, the time window shall look both in the past and the future keeping the time of the current orbit as middle point (i.e., 7 days in the future and 7 in the past). "ValIntersect" policy with $\Delta t_0 = 7$ days and $\Delta t_1 = 7$ days.

A daily computation of background correction data used for L2 HCHO and L2 SO$_2$ products is performed by UPAS-BC processor for both NRTI and OFFL cases. In the NRTI processing chain, this input is optional with a "LatestValIntersect" policy with $\Delta t_0 = 4$ days and $\Delta t_1 = 0$ days. In the OFFL processing chain, the input is mandatory with the "LatestValIntersect" policy with $\Delta t_0 = 4$ days and $\Delta t_1 = 0$ days.
2.7 UpasPsmAdapter: Workflow and role

UpasPsmAdapter leads to the thin Layer Interface and its structure is addressed in Figure 11. It deals with the JobOrder input that has been shown in the high level chart of Figure 1. This is input from PGDS to the UpasPsmAdapter interface: the role of the adapter is to parse, process and forward the configuration and settings embedded in the JobOrder file to the respective UPAS processor. When the processing is done, an exit code (EC in the figure) representing the status and a detailed logging file are ingested as input from UpasPsmAdapter processor and forwarded to PDGS. Before this operation, the logging file is sorted out and only stderr messages are shown to PDGS side.

![Figure 11: UpasPsmAdapter processor](image)

2.7.1 Testing modality

Besides the operational modes, it is always possible to set up a test modality in order to generate intermediate outputs or any single or subset of products. Diagnostic tests might be carried out by a proper setting of the internal configuration of the processor. However, the testing mode is disabled in the delivered operational version of the processor due to performance issue.

2.7.2 Multi-Core scheme

One single UPAS processor is responsible to generate all the L2 species corresponding to a L1b product and it is compatible with a multi-core scheme. Since only one single UPAS is involved for processing a given L1b product, any possible intermediate outputs will be handled internally. However, single product can be activated independently using configuration settings.

2.8 Input Data

This subsection explains in high level the purpose of the various input files (L1b and PDGS configuration) and data which is employed to configure the processor.
2.8.1 L1b Product

L1b [AD02] is the basis for generating L2 product and it is the main input of S5P UPAS L2 processor. UPAS needs as input the irradiance and the radiance products in the 6 bands covered by medium wave ultraviolet (UV, Bands 1 and 2), long wave ultraviolet combined with visual (UVIS, Band 3) and near infrared (NIR, Bands 4 and 5) detectors in order to generate L2 NRTI/OFFL/RPRO data. Geolocation data is embedded in each radiance product. The ranges of wavelengths as well as their respective spectral bands and products are given in Table 6. Description of the L1B files is given in Section 3.2.1. According to [AD02], the products are distributed in different files, more in detail:
- A single netCDF-4 L1b file for the UVN module with the Irradiance Product
- 6 netCDF-4 L1b files for each band in the UVN with the Radiance Product

<table>
<thead>
<tr>
<th>Instrument Model</th>
<th>UVN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral band</td>
<td>1</td>
</tr>
<tr>
<td>Spectral range</td>
<td>270-300</td>
</tr>
<tr>
<td>Products</td>
<td>CLOUD_</td>
</tr>
</tbody>
</table>

Table 6: Spectral bands, spectral range and relative products of TROPOMI instrument.

The HDF-5 compression flag for each file is turned OFF. The S5P L1b products are in netCDF-4 format [ER03] following the guidelines of Inspire directive [ER06] and CF-Metadata [ER04] standards, as described in [AD02]. Fletcher32 for validating the integrity of the data is expected in the L1b products. PDGS side is responsible to provide the appropriate radiance and irradiance files to UPAS L2 processor.

2.8.2 Input Configurations

Two are the parts of the configuration, i.e., the dynamic configuration for controlling the processor from PDGS and the internal algorithm configuration as addressed in detail in the following Sections 2.8.2.1 and 2.8.2.2. Moreover, in Section 2.8.2.3 the static data employed by the processor is shown and the relative reference document is given as well. Any change affecting either the static data or the internal configuration file implies a new version of UPAS.

2.8.2.1 PDGS Configuration

The format and specifications of the JobOrder file are deeply addressed in [AD08], which is tailoring of [AD12] concerning definitions and default values.

2.8.2.2 UPAS Internal Configuration

The input configuration file contains variables that control the execution of the L1b to L2 processing in all the possibly modes (NRTI, OFFL, and RPRO). The file is structured in classes which reflect the different implemented algorithms in the processor, i.e., O₃ total column, O₃ tropospheric column, SO₂, HCHO, Clouds. Besides this, it includes information about static data necessary to run some of the algorithms as well as the repository reference of the static auxiliary files. From the operational point of view, the availability of resources, databases and variables is checked immediately for validity before any further processing. The variables shall cover the following:

- Type of processing (NRTI, OFFL, RPRO)
- Fitting configuration for trace gases and clouds
- Auxiliary data location
- Tuning parameters for each trace gas

For all those retrieve algorithms that need intermediate steps for computing the specific trace gas, the processor will follow automatically different procedures in base on the selection indicated in the configuration file.
The internal configuration file is in XML format.

2.8.2.3 UPAS static data

Static data is used from the processor in order to generate L2 products and they are, e.g., cross-section, slit function, wavelength dependent surface albedo etc.

A separated document containing the harmonization of the static data between KNMI and DLR has been released. It is referenced in [RD05].

2.8.3 Auxiliary Data

Three types of input dynamic data are ingested from the processor, i.e., the snow/ice data from NASA, the a-priory TM5 model data needed for formaldehyde and SO$_2$ retrievals and the ECMWF forecast data. The dynamic data corresponding to L1b product should be provided by the PDGS.

A clear overview of which specific external data are required for each trace gas as well as for different modalities of the processor is clearly stated in Table 7. Note that this is the optimum set of aux data for both NRTI and OFFL cases.

Note that in any case the processor can generate one product at a time. However, in order to generate SO$_2$ product, the processor needs O$_3$ total column product. This specific case leads to better performance if the generation of O$_3$ total column and SO$_2$ are performed at the same time. The following table shows the operational scenario designed by PDGS where the L2__CLOUD_ and L2__O3___ products are ingested as input rather than being calculated.

<table>
<thead>
<tr>
<th>Mode</th>
<th>L2 Output-Product</th>
<th>NISE Snow/Ice AUX (AUX_NISE__)</th>
<th>TMS Profiles AUX</th>
<th>ECMWF Profiles AUX</th>
<th>Background Correction</th>
<th>L2__CLOUD_</th>
<th>L2__O3___</th>
<th>Other inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTI</td>
<td>Clouds (L2__CLOUD__)</td>
<td>optional</td>
<td></td>
<td>optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI</td>
<td>SO2 (L2__SO2_)</td>
<td>optional</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI</td>
<td>HCHO (L2__HCHO__)</td>
<td>optional</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI</td>
<td>O3 total column (L2__O3_)</td>
<td>optional</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI</td>
<td>O$_3$ tropospheric column (L2__O3_TCL)</td>
<td>X</td>
<td></td>
<td>(Set of)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFL-RPRO</td>
<td>Clouds (L2__CLOUD__)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L2 Aerosol Index (L2__AER_AI)</td>
</tr>
<tr>
<td>OFFL-RPRO</td>
<td>SO2 (L2__SO2_)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L2 Aerosol Index (L2__AER_AI)</td>
</tr>
<tr>
<td>OFFL-RPRO</td>
<td>HCHO (L2__HCHO__)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFL-RPRO</td>
<td>O3 total column (L2__O3_)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFL-RPRO</td>
<td>O$_3$ tropospheric column (L2__O3_TCL)</td>
<td>X</td>
<td></td>
<td>(Set of)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: L2 products and their respective input data.

A lack of auxiliary data (NISE, TM5, ECMFW) leads to employ climatological data always available to the L2 UPAS processor, in order to avoid any gap in the processing chain.

The following three subsections (Sections 2.8.3.1, 2.8.3.2 and 2.8.3.3) provide more information concerning data format, reliability and characteristic.
2.8.3.1 Snow/Ice Data (AUX_NISE__)

This information is needed by the computation of both Clouds and trace gas products. The baseline source of snow/ice ancillary data is the Near-real-time Ice and Snow Extent service (NISE) from NASA, detailed in the following list (information collected in [ER01]). However, more details are given in the respective ATDB documents of the products. Please note that in case L2__CLOUD__ product is ingested as input in order to generate the other products, this input is not needed at all for the remaining L2 products (see Table 7).

a) Format and range of the data (NISE)
Single HDF-EOS file containing four grid objects: one data grid and one age grid each for both the Northern and Southern hemispheres. The data grids contain snow extent, sea ice concentration, and coastal (mixed) pixels. The age grids contain the age of input data (from day of data acquisition to map production) in days relative to the date of the daily file. The data and age grids contain binary arrays of unsigned 1-byte (8-bit) data ranging in value from 0 to 255.

b) Frequency of the data (NISE)
One single file per day comprising the last available snow extent or sea ice concentration data for each pixel.

c) File Name Conventions (NISE)
The template of file name conventions of NISE is as follows:
NISE_SSMISF##_yyymmd.HDFEOS

Where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISE</td>
<td>Near-real-time Ice and Snow Extent</td>
</tr>
<tr>
<td>SSMIS</td>
<td>Special Sensor Microwave Imager/Sounder: sensor</td>
</tr>
<tr>
<td>F##</td>
<td>DMSP Platform: F13, F17</td>
</tr>
<tr>
<td>yyyy</td>
<td>4-digit year</td>
</tr>
<tr>
<td>mm</td>
<td>2-digit month of year</td>
</tr>
<tr>
<td>dd</td>
<td>2-digit day of month</td>
</tr>
</tbody>
</table>

Table 8: File name conventions of NISE ancillary data.

Example: NISE_SSMISF17_20090801.HDFEOS

However, this has to be compliant with S5p filename conventions as reported in [AD07]. For this auxiliary file the identifier is therefore "AUX_NISE__“.

d) File Size (NISE)
HDF-EOS data files: ~2.1 MB each.

e) Spatial coverage, resolution and projection (NISE)
Spatial coverage is global except for a gap of three degrees latitude from each pole (87 to 90 degrees latitude). The spatial resolution is 25 km. The data set uses the NSIDC NL and SL EASE-Grids of 721 columns by 721 rows. The respective pole is aligned with the centre of the pixel at the centre of the grid.

f) Data access (NISE)
The data is available via FTP. Subject to PDGS.

g) Selection Rules (PDGS V 2.3.0)
For L2__CLOUD__, NRTI and OFFL, the selection rules are:
"LatestValIntersect" policy with $\Delta_0 = 72$ hours and $\Delta_1 = 0$ hours.
2.8.3.2 Chemistry Transport Model (AUX_CTMFCT and AUX_CTMANA)

Chemistry Transport models data are needed for SO₂ and HCHO retrievals for both NRTI and OFFL modes. The baseline source of the ancillary data is the Transport-Chemistry model TM5 data provided by KNMI and detailed in the following list (information collected in [ER02] and [RD06]). However, more details are given in the respective ATDB documents of the products.

a) Format and range of the data (TM5)
NRTI: Five files in Net-CDF4 format including five days forecast (AUX_CTMFCT).
OFFL: One single netCDF-4 file (AUX_CTMANA).

b) Frequency of the data (TM5)
Once a day with time resolution set to half an hour (t = 48).

c) File Name Conventions (TM5)
The template of file name conventions is as follows:
S5P_<CCCC>_AUX_<DDDDDD>_<yyyymmddThhmmss>_<YYYYMMDDTHHMMSS>_<YYYYMMDDTHHMMSS>.nc

Where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><CCCC></td>
<td>The file class, which is either NRTI for near-real-time processing or OFFL for offline processing.</td>
</tr>
<tr>
<td><DDDDDD></td>
<td>The product semantic descriptor. It can be either AUX_CTMFCT (forecast) or AUX_CTMANA (analysis). Both files have the same structure.</td>
</tr>
<tr>
<td><yyyymmddThhmmss></td>
<td>Product start validity time, consisting of 4-digit year, 2-digit month, 2-digit day, a separator 'T', 2-digit hour, 2-digit minute and 2-digit second.</td>
</tr>
<tr>
<td><YYYYMMDDTHHMMSS></td>
<td>Product stop validity time, consisting of 4-digit year, 2-digit month, 2-digit day, a separator 'T', 2-digit hour, 2-digit minute and 2-digit second.</td>
</tr>
<tr>
<td><YYYYMMDDTHHMMSS></td>
<td>Production time, consisting of 4-digit year, 2-digit month, 2-digit day, a separator 'T', 2-digit hour, 2-digit minute and 2-digit second.</td>
</tr>
</tbody>
</table>

Table 9: File name conventions of TM5 ancillary data.

Example:
S5P_NRTI_AUX_CTMFCT_20160101T000102_20160101T010105_20160101T010115.nc

The format of the TM5 filename is already compliant with [AD07].

d) File Size (TM5) TBD

<table>
<thead>
<tr>
<th>Mode</th>
<th>Size / Day</th>
<th>Size / Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTI</td>
<td>5 GB</td>
<td>1825 GB</td>
</tr>
<tr>
<td>OFFL</td>
<td>1 GB</td>
<td>365 GB</td>
</tr>
</tbody>
</table>

Table 10: TM5 Data Volume

e) Spatial coverage, resolution and projection (TM5)
The spatial resolution is 1x1 degree and the vertical resolution is 34-layer. Time resolution is half an hour (t=48).

f) Data access (TM5)
Refer to [RD06]. Subject to PDGS.

g) Selection Rules (PDGS V 2.3.0)
A set of files containing consecutive days of coverage is expected by the processor. In NRTI processing chain, for L2__HCHO__ and L2__SO2__, a set of AUX_CTMFCT files is expected, with the policy “LatestValIntersect” with \(\Delta t = 2\) days and \(\Delta t_1 = 0\) days. However, this input is optional. In contrast, in the OFFL/RPRO processing chain, for L2__HCHO__ and L2__SO2__, a set of AUX_CTMAN or AUX_CTMANA files has to be given to the processor. (These two types of files are both supported in all the processing chain’s modalities since they contain the same file structure.) The selection rule in this case is:
- AUX_CTMANA with “ValIntersect” policy and \(\Delta t_0 = 2\) days and \(\Delta t_1 = 2\) days as first choice
- AUX_CTMFCT with “LatestValCover” policy as second choice
- AUX_CTMFCT with “LatestValIntersect” policy with \(\Delta t_0 = 15\) days and \(\Delta t_1 = 0\) days as third choice

2.8.3.3 ECMWF meteo file (AUX_MET_TP, AUX_MET_QP, AUX_MET_2D)
This information is needed by the computation of both Clouds and trace gas products. The baseline source of the pressure profiles data is the ECMWF data [ER08], detailed in the following list. However, more details are given in the respective ATDB documents of the products. Please note that in case L2__CLOUD__ product is ingested as input in order to generate the other products, this input is not needed at all for the remaining L2 products (see Table 7).

a) Format and range of the data (ECMWF)
GRIB format. However, this data shall be converted to netCDF-4 format outside the processor. Details in [RD04].

b) Frequency of the data (ECMWF)
Every 12 hours.

c) File Name Conventions (ECMWF)
Filename has to be compliant with S5p filename conventions as reported in [AD07]. For this auxiliary file the identifier shall be therefore AUX_MET_TP for the temperature profiles, AUX_MET_2D for the meteorological surface parameters and AUX_MET_QP specific humidity profiles.

d) File Size (ECMWF, netCDF-4 format)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Size / product</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTI</td>
<td>250MB</td>
<td>AUX_MET_TP</td>
</tr>
<tr>
<td>OFFL</td>
<td>600MB</td>
<td>AUX_MET_TP</td>
</tr>
<tr>
<td>NRTI</td>
<td>210MB</td>
<td>AUX_MET_2D</td>
</tr>
<tr>
<td>OFFL</td>
<td>500MB</td>
<td>AUX_MET_2D</td>
</tr>
<tr>
<td>NRTI</td>
<td>300MB</td>
<td>AUX_MET_QP</td>
</tr>
<tr>
<td>OFFL</td>
<td>700MB</td>
<td>AUX_MET_QP</td>
</tr>
</tbody>
</table>

Table 11: ECMWF Data Volume after the conversion to netCDF-4

e) Spatial coverage, resolution and projection (ECMWF)
Time resolution is every three hours covering 48 hours. Global coverage is provided by this model.

f) Data access (ECMWF)
h) Selection Rules (PDGS V 2.3.0)

For the L2__CLOUD__ NRTI processing chain the "LatestValCover" policy with $\Delta t_0 = 0$ minutes and $\Delta t_1 = 0$ minutes is used – whereby this input is also optional. For the L2__CLOUD__ OFFL processing chain the input is mandatory, with the "LatestValIntersect" policy with $\Delta t_0 = 180$ minutes and $\Delta t_1 = 180$ minutes.

2.8.4 Fall-back solutions

In case of not availability or corruption of the dynamic auxiliary data, UPAS reverts to a fall-back solution, i.e., using climatological static data and adding a flag in the L2 product. This operation is done automatically, i.e., PDGS shall not provide fall-back static data by referring them in the joborder file. Therefore, it is not necessary to provide filename and type of this data since it is strictly handled internally.

2.9 Output Data

A common documentation covering L2 structure and metadata valid for both KNMI and DLR is work in progress. A detailed description of the structure of L2 products will be addressed in the Product User Manual (PUM). In a high-level view, three are the main types of outputs of the processor, i.e., L2 outputs (which include L2 metadata), logging files and Intermediate outputs. A short overview is therefore addressed in the following subsections.

2.9.1 L2 Products

This is the main output of the processor. A single file with .nc extension is provided from UPAS for each L2 product, with a total of 5 files, i.e.:

- O$_3$ total column (PUM: [RD13]) O3
- O$_3$ tropospheric column (PUM: [RD15]) O3_TCL
- SO$_2$ (PUM: [RD17]) SO2
- HCHO (PUM: [RD16]) HCHO
- Clouds (PUM: [RD14]) CLOUD

In addition, information of geolocation, metadata and detailed results for each processed trace gas is embedded in each final L2 product.

The output format of the L2 products is netCDF-4 [ER03] following the guidelines of Inspire directive [ER06], CF-Metadata standards [ER04] and several ISOs standards [RD09] [RD10] [RD11] [RD12].

2.9.1.1 L2 Metadata

Metadata gives information about the satellite, algorithms, configuration version as well as other parameters useful for the interpretation of the processed data. Metadata has to comply with different sources and standards as following listed:

- Internal Metadata (S5P)
- CF-Conventions (CF) [ER04]
- NetCDF User Guide Conventions (NUG) [ER07]
- Fixed ESA Header (ESAH) [AD04]
- Inspire directive (INSP) [ER06]
- ISOs standard (ISO) [RD09] [RD10] [RD11] [RD12]

A detailed description of the L2 S5P Metadata conventions used in this framework can be found in [RD18] and in the corresponding Product User Manuals ([RD13], [RD14], [RD15], [RD16], [RD17]).
2.9.2 Logging Messages

The purpose of the Logging interface is to monitor the status of the S5P UPAS L2 processor. The set of messages generated from the processor are forwarded to a Management Layer which logs them in a Log file. Messages marked as errors and progress status will be shown directly to the operator.

The versions of the processor that will be delivered are a debug version and an operational version. The logging file generated from the UPAS debug binary will contain all the logging types defined in Table 13. On the other hand, the operational version will log only the progress and error messages for avoiding speed lost in processing.

The format of the logging messages follows the ESA Standard [AD12].

2.9.3 Exit Code

Exit code rules follow the processor ICD definitions [AD11] which is tailored from [AD12].
3. Detailed I/O Data Format

In this chapter, a summary of I/O files of S5P UPAS L2 PDGS processor is shown in Table 12 reported in Section 3.1. Moreover, there will be a sub-section for each I/O file employed (Sec. 3.2.1) and generated (Section 3.2.1.12) from the processor.

3.1 List of I/O Files Employed

The following Table 12 shows a list of the involved I/O files. Two are the types of files specified in the table, i.e.:
- Products
- Auxiliary data files

Furthermore, all those files indicated as mandatory are necessary for the processing chain, i.e., they are needed in order to generate L2 output and to fulfil the expected compulsory requirements ([AD01], [RD01]).

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Type</th>
<th>I/O</th>
<th>Mandatory</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>001_IN</td>
<td>PDGS Configuration</td>
<td>JobOrder</td>
<td>Input</td>
<td>Yes</td>
<td>JobOrder.XXXXXXXXXX</td>
</tr>
<tr>
<td>002_IN</td>
<td>L1b Irradiance Product UVN</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_IR_UVN</td>
</tr>
<tr>
<td>003_IN</td>
<td>L1b Radiance Product UV band 1 [270-300 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD1</td>
</tr>
<tr>
<td>004_IN</td>
<td>L1b Radiance Product UV band 2 [300-320 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD2</td>
</tr>
<tr>
<td>005_IN</td>
<td>L1b Radiance Product VIS band 3 [310-405 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD3</td>
</tr>
<tr>
<td>006_IN</td>
<td>L1b Radiance Product VIS band 4 [405-500 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD4</td>
</tr>
<tr>
<td>007_IN</td>
<td>L1b Radiance Product NIR band 5 [675-725 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD5</td>
</tr>
<tr>
<td>008_IN</td>
<td>L1b Radiance Product NIR band 6 [725-775 nm]</td>
<td>Product</td>
<td>Input</td>
<td>Yes</td>
<td>L1B_RA_BD6</td>
</tr>
<tr>
<td>009_IN</td>
<td>Snow/Ice Data</td>
<td>Auxiliary</td>
<td>Input</td>
<td>No</td>
<td>AUX_NISE__</td>
</tr>
<tr>
<td>010_IN</td>
<td>TM5 Model Data</td>
<td>Auxiliary</td>
<td>Input</td>
<td>No</td>
<td>AUX_CTMFCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUX_CTMANA</td>
</tr>
<tr>
<td>011_IN</td>
<td>ECMWF Data</td>
<td>Auxiliary</td>
<td>Input</td>
<td>No</td>
<td>AUX_MET_2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUX_MET_QP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUX_MET_TP</td>
</tr>
<tr>
<td>012_IN</td>
<td>Aerosol Index data</td>
<td>Auxiliary</td>
<td>Input</td>
<td>No</td>
<td>L2_AER_AI</td>
</tr>
<tr>
<td>013_OU</td>
<td>L2 O₃ total column</td>
<td>Product</td>
<td>Output</td>
<td>Yes</td>
<td>L2_O3_</td>
</tr>
<tr>
<td>014_OU</td>
<td>L2c O₃ tropospheric column</td>
<td>Product</td>
<td>Output</td>
<td>Yes</td>
<td>L2_O3_TCL</td>
</tr>
<tr>
<td>015_OU</td>
<td>L2 SO₂</td>
<td>Product</td>
<td>Output</td>
<td>Yes</td>
<td>L2_SO2_</td>
</tr>
<tr>
<td>016_OU</td>
<td>L2 HCHO</td>
<td>Product</td>
<td>Output</td>
<td>Yes</td>
<td>L2_HCHO_</td>
</tr>
<tr>
<td>017_IO</td>
<td>L2 Clouds retrieval</td>
<td>Product</td>
<td>Input/Output</td>
<td>Yes</td>
<td>L2_CLOUD_</td>
</tr>
<tr>
<td>018_IO</td>
<td>Background Correction</td>
<td>Auxiliary</td>
<td>Input/Output</td>
<td>Yes</td>
<td>AUX_BGSO2_</td>
</tr>
<tr>
<td>ID</td>
<td>Name</td>
<td>Type</td>
<td>I/O</td>
<td>Mandatory</td>
<td>ID</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>019_O</td>
<td>Logging Messages</td>
<td>Auxiliary</td>
<td>Output</td>
<td>Yes</td>
<td>AUX_BGHCHO</td>
</tr>
</tbody>
</table>

Table 12: Involved I/O files of the processor

3.2 File Definition

Each file detailed in this document is classified by using a standardised template structured in categories, i.e., identifier, name, I/O, type, description, format, size, data volume, remarks. A definition of each category is given as follows:

Identifier

A unique identifier is defined for each I/O file used or generated from UPAS L2 processor. The identifiers are listed in Table 12.

Name

This field describes shortly the name of the file.

I/O

It defines whereas the file is an Input or Output of the processor.

Type

Type defines the relation between the file and the processor. The types are defined as follows:

- **Product**: It refers either to the primary input data or the output data delivered from the processor to the end user.
- **Auxiliary**: It is an input of the processor and contains data external to the GS and the processor. Auxiliary data may be generated from external sources.

Description

Content and purpose of the file are addressed in this part.

Format

Data format and structure will be defined in this section. The specifications are TBD.

Size

It defines the criteria for the sizing of the files.

Data Volume

It defines the size for the whole reference data set.

Remarks

Relevant comments and explanations are reported in this section when necessary.

L2 status flags

Relevant L2 flags worth to be mentioned in the L2 products.
3.2.1 Input Files

3.2.1.1 PDGS Configuration

Identifier
001_IN

Name
JobOrder.XXXXXXXXX.xml

Where XYYYYYYYY is a 9-digits counter starting from 000000001.

I/O
Input

Type
JobOrder file

Description
The specifications of the PDGS configuration file are detailed in the External ICD document [AD09].

Format
XML

Size
Not relevant.

Data Volume
<1MB

Remarks
N/A
3.2.1.2 L1b Irradiance Product UVN (L1B_IR_UVN)

Identifier
002_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:

L1B_IR_UVN

I/O
Input

Type
Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. It covers medium wave ultraviolet (UV), long wave ultraviolet combined with visual (UVIS) and near infrared (NIR). It is generated once a day and the selection rule for UPAS shall be “LatestValIntersect” policy with $\Delta t_0 = 26$ hours and $\Delta t_1 = 0$. If no files are found with this policy then use “LatestValidity”.

Format
netCDF-4

Size
One single scanline

Data Volume
0.02 GByte

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.3 L1b Radiance Product UV band 1 [270-300 nm] \((L1B_RA_BD1)\)

Identifier
003_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:

\(L1B_RA_BD1\)

I/O
Input

Type
L1b Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 1 ranging from 270 up to 300 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
1.7 GB (Appendix A in [AD02])

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.4 L1b Radiance Product UV band 2 [300-320 nm] (L1B_RA_BD2)

Identifier
004_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L1B_RA_BD2

I/O
Input

Type
L1b Product

Description
The SSP L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 2 ranging from 300 up to 320 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
6.0 GB (Appendix A in [AD02])

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.5 L1b Radiance Product UVIS band 3 [310-405 nm] (L1B_RA_BD3)

Identifier
005_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L1B_RA_BD3

I/O
Input

Type
L1b Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 3 ranging from 310 up to 405 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
6.1 GB (Appendix A in [AD02])

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.6 L1b Radiance Product UVIS band 4 [405-500 nm] (L1B_RA_BD4)

Identifier
006_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L1B_RA_BD4

I/O
Input

Type
L1b Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 4 ranging from 405 up to 500 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
6.1 GB (Appendix A in [AD02])

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.7 L1b Radiance Product NIR band 5 [675-725 nm] (L1B_RA_BD5)

Identifier
007_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L1B_RA_BD5

I/O
Input

Type
L1b Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 5 ranging from 675 up to 725 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
6.1 GB (Appendix A in [AD02])

Remarks
Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.8 L1b Radiance Product NIR band 6 [725-775 nm] (L1B_RA_BD6)

Identifier
008_IN

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L1B_RA_BD6

I/O
Input

Type
L1b Product

Description
The S5P L1b products are in netCDF-4 format [ER07] following the guidelines of Inspire and CF-Metadata standards, as described in [AD02]. Geolocation is included in the product. It covers spectral band 6 ranging from 725 up to 775 nm.

Format
netCDF-4

Size
3246 scanlines

Data Volume
6.1 GB (Appendix A in [AD02])

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS.

Beside the data .nc file, an additional header file with .HDR in XML structure is generated out from L1B product by PDGS. It contains a variable as well as a fixed part of header/metadata information (details in Section 9 of L01B IODD [AD02]). The filename of the header file is as the same as the data file, except for the extension.
3.2.1.9 Snow/Ice Data (AUX_NISE_)

Identifier
009_IN

Name
Detailed file name conventions can be found in Sec. 2.8.3.1. However, the identifier for this data is AUX_NISE_.

I/O
Input

Type
Auxiliary Data

Description
The source of snow/Ice ancillary data is NISE provided by NASA.

Format
HDF-EOS

Size
~2.1 MB each file, one single file per day.

Data Volume
~770 MB / Year

Remarks
In case of not availability, climatological data will be used in order to not break the processing chain.

L2 status flags
A status flag is placed in each L2 product in the global attribute part called “Status_NISE_”. It can assume two values, i.e. "Nominal" if valid AUX_NISE_ data was provided or "Fallback" otherwise.
3.2.1.10 TM5 Model Data (AUX_CTMFCT and AUX_CTMANA)

Identifier
010_IN

Name
Detailed file name conventions can be found in Sec. 2.8.3.2. The product semantic descriptor can be either AUX_CTMFCT (forecast) or AUX_CTMANA (analysis). Both files have the same structure.

I/O
Input

Type
Auxiliary data

Description
The source of climate models data ancillary data is TM5 provided by KNMI.

Format
netCDF-4

Size
5 files per day for NRTI, including 5 days forecast. One single file per day for the OFFL case.

Data Volume
See Table 10: TM5 Data Volume

Remarks
In case of not availability, climatological data will be used in order to not break the processing chain.

L2 status flags
A status flag is placed in the L2__HCHO__ and L2__SO2__ products in the global attribute part called "Status_CTMFCT_CTMANA". It can assume two values, i.e. "Nominal" if valid AUX_CTMFCT or AUX_CTMANA data was provided or "Fallback" otherwise.
3.2.1.11 ECMWF forecast data (AUX_MET_2D, AUX_MET_TP, AUX_MET_QP)

Identifier
011_IN

Name
The identifiers for this data shall be AUX_MET_2D, AUX_MET_TP and AUX_MET_QP. File name conventions shall follow the guidelines in [AD07].

I/O
Input

Type
Auxiliary data

Description
Pressure profiles forecast provided by ECMWF

Format
GRIB. However, a conversion in netCDF-4 outside the processor is expected.

Size
One new forecast every 12 hours.

Data Volume
See Table 11.

Remarks
In case of not availability, climatological data will be used in order to not break the processing chain.

L2 status flags
A status flag is placed in each L2 product in the global attribute part called "Status_MET_2D". It can assume two values, i.e. "Nominal" if valid AUX_MET_2D, AUX_MET_TP and AUX_MET_QP data were provided or "Fallback" otherwise.
3.2.1.12 Aerosol Index (L2__AER_AI)

Identifier

012_IN

Name

The identifiers for this data shall be L2__AER_AI. File name conventions shall follow the guidelines in [AD07].

I/O

Input

Type

Auxiliary data

Description

Aerosol Index product provided by L2 KNMI. This input is needed only in the OFFL chain for computing L2__SO2__ product.

Format

netCDF-4

Size

216 Mbyte / Orbit [RD04]

Data Volume

~1154 Gbyte / Year

Remarks

In case of not availability, climatological data will be used in order to not break the processing chain.

L2 status flags

A status flag is placed in the OFFL_L2__SO2__ and OFFL_L2__SO2__ products in the global attribute part called "Status_AER_AI". It can assume three values, i.e. "Nominal" if valid L2__AER_AI data were provided or “Fallback” otherwise. A third possible value is “Unneeded” which is present in the NRTI_L2__SO2__ / NRTI_L2__HCHO__ products.
3.2.2 Output Files

3.2.2.1 L2 O₃ total column (L2__O3____)

Identifier
013_OU

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L2__O3_ __ __

I/O
Output

Type
L2 Product

Description
L2 product containing O₃ total column trace gas. Geolocation is appended in the product as well. Refer to the corresponding PUM [RD13] for a full description of this product.

Format
netCDF-4

Size
A reasonable number of scanlines set to 3300 was chosen with a number of ground pixel set to 450. Total pixels estimated: ~1500000. Data Volume reported with HDF-5 compression flag set to ON. The data Volume estimation accounts only one single processing mode.

Data Volume
0.74 GB / Orbit
4.1 TB / Year

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS. The filename of the header file is as the same as the data file, except for the extension.

L2 status flags
A L2 status flag is placed in this L2 product in the global attribute part called “Status_L2__CLOUD_”. It can assume two values, i.e. “External” if L2__CLOUD_ product was provided to the processor as input or “Internal” if the L2__CLOUD_ product was rather computed.
3.2.2.2 L2c O3 tropospheric column (L2__O3_TCL)

Identifier
014_OU

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:

L2__O3_TCL

I/O
Output

Type
L2 Product

Description
L2c product containing O3 tropospheric column trace gas. Geolocation is appended in the product as well. Refer to the corresponding PUM [RD15] for a full description of this product. The data Volume estimation accounts only one single processing mode.

Features:
- Global Coverage.
- ~1,500,000 pixels per orbit.
- ~14 orbits for a day coverage (time slot might be up to 6 days)

Format
netCDF-4

Size
<5Mbyte / product / day

Data Volume
~5 MByte / day
~1.8GByte / Year

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS. The filename of the header file is as the same as the data file, except for the extension.
3.2.2.3 L2 SO$_2$ (L2__SO2__) Identifier
015_OU

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L2__SO2__

I/O
Output

Type
L2 Product

Description
L2 product containing SO$_2$ trace gas. Geolocation is appended in the product as well. Refer to the corresponding PUM [RD17] for a full description of this product.

Format
netCDF-4

Size
A reasonable number of scanlines set to 3300 was chosen with a number of ground pixel set to 450. Total pixels estimated: ~1.500.000. Data Volume reported with HDF-5 compression flag set to ON. The data Volume estimation accounts only one single processing mode.

Data Volume
0.5 GB / Orbit
2.8 TB / Year

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS. The filename of the header file is as the same as the data file, except for the extension.

L2 status flags
Two L2 status flags are placed in this L2 product in the global attribute part called: “Status_L2__CLOUD”, “Status_L2__O3____”. The first one can assume two values, i.e. “External” if L2__CLOUD__ product was provided to the processor as input or “Internal” if the L2__CLOUD__ product was rather computed. Moreover, the second flag might assume two values, i.e. “External” if L2__O3____ product was provided to the processor as input or “Internal” if the L2__O3____ product was rather computed.
3.2.2.4 L2 HCHO (L2_HCHO__)

Identifier
016_OU

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L2__HCHO__

I/O
Output

Type
L2 Product

Description
L2 product containing HCHO trace gas. Geolocation is appended in the product as well. Refer to the corresponding PUM [RD16] for a full description of this product.

Format
netCDF-4

Size
A reasonable number of scanlines set to 3300 was chosen with a number of ground pixel set to 450. Total pixels estimated: ~1,500,000. Data Volume reported with HDF-5 compression flag set to ON. The data Volume estimation accounts only one single processing mode.

Data Volume
0.4 GB / Orbit
2.2 TB / Year

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS. The filename of the header file is as the same as the data file, except for the extension.

L2 status flags
A status flag is placed in this L2 product in the global attribute part called “Status_L2__CLOUD__”. It can assume two values, i.e. “External” if L2__CLOUD__ product was provided to the processor as input or “Internal” if the L2__CLOUD__ product was rather computed.
3.2.2.5 L2 Clouds (L2__CLOUD__)
Identifier
017_IO

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. A substring of the full filename for this product is as follows:
L2__CLOUD__

I/O
Output

Type
L2 Product

Description
L2 product which contains retrieved clouds information. Geolocation is appended in the product as well. This is generated by UPAS-L2 (as output) and might be given as input to UPAS-L2 in order to generate other species. Refer to the corresponding PUM [RD14] for a full description of this product.

Format
netCDF-4

Size
A reasonable number of scanlines set to 3300 was chosen with a number of ground pixel set to 450. Total pixels estimated: ~1.500.000. Data Volume reported with HDF-5 compression flag set to ON. The data Volume estimation accounts only one single processing mode.

Data Volume
0.5 GB / Orbit
2.8 TB / Year

Remarks
A XML Header file with extension .HDR shall be extracted and generated out from the L2 product by PDGS. The filename of the header file is as the same as the data file, except for the extension.
3.2.2.6 Background Correction (AUX_BGSO2_ and AUX_BGHCHO)

Identifier
018_IO

Name
The file name conventions will follow the directives given by ESA in [AD07], chapter 4. The two file identifiers of the background correction are as follows:
AUX_BGSO2_
AUX_BGHCHO

I/O
Input/Output

Type
L2 Product

Description
Background Correction data generated by UPAS-BC (as output) and used by UPAS-L2 (as input). Daily global coverage gridded in L2c grid. The product shall be archived by PDGS. Examples of data structures are shown in Appendix A and B.

Format
netCDF-4

Size
<5Mbyte / file / day

Data Volume
~20 MByte / day
~7.3 GByte / Year

Remarks
None

L2 status flags
A status flag is placed in the L2__HCHO__ and L2__SO2__ products in the global attribute part called “Status_BG”. It can assume two values, i.e. “Nominal” if valid AUX_BGHCHO or AUX_BGSO2_ data was provided or “Not_Available” otherwise (In this case the fallback adopted is to not apply any correction to the data).
3.2.2.7 Logging Messages

Identifier
019_OU

Name
NONE

I/O
Output

Type
Auxiliary

Description

Purpose of the logging messages is to provide messages of error and progression for the operational version of the processor and, in addition, messages of status, debug and warning for the debug version of the processor.

Format

The log strings are in ASCII style, written in `stderr` (only for error and progressive messages) and `stdout` (all the other types of messages). Moreover, the `stderr` strings generated from the processor are shown directly to the operator.

The logging format is tailoring [AD12].

The logging messages consist in the following field separated by a blank character.

1. **Date and time**: variable consisting in 26 characters in the format `yyyy-mm-ddThh:mm:ss.nnnnnn`, where:
 - a) `yyyy` denotes the year, e.g., 2015
 - b) `mm` denotes the month, e.g., 05
 - c) `dd` denotes the day, e.g., 01
 - d) `T` is a separator character
 - e) `hh` is the hour in 24 hours format, i.e., 15
 - f) `mm` denotes the minutes, e.g., 55
 - g) `ss` denotes the seconds, e.g., 06
 - h) `nnnnnn` refers to microseconds

 All the abovementioned values are left padded by 0 (zero) except for microseconds, where the 0 (zero) padded is right.

2. **Node name**: variable identifying which of the workstation node the processor is running on. Basically, this is retrieved through a `gethostname` system call.
3. **Processor Name**: alphanumeric variable without whitespaces identifying the name of the processor.
4. **Processor Version**: 6 characters in the format `vv.vv.vv`, e.g. 01.02.01
5. **PID**: 6 characters variable identifying the system level processor ID, obtained by `getpid` system call, in squared brackets.
6. **Header Separator**: 1 colon character.
7. **Message Type**: 3 characters variable used to identify the nature of the message being issued. The digits consist in two squared brackets surrounding a letter, i.e. `[x]`, where x has to be one mode listed in the next Table 13:
Table 13: Schema of I/O files and different modes of SSP UPAS L2 processor

<table>
<thead>
<tr>
<th>Digits</th>
<th>Meaning</th>
<th>Description</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Debug Messages</td>
<td>Messages tracing the SW behavior</td>
<td>stdout</td>
</tr>
<tr>
<td>I</td>
<td>Informational Messages</td>
<td>Information on kind and status of operations</td>
<td>stdout</td>
</tr>
<tr>
<td>W</td>
<td>Warning Messages</td>
<td>An error occurred and the processor was able to continue</td>
<td>stdout</td>
</tr>
<tr>
<td>E</td>
<td>Error Messages</td>
<td>An error occurred and the processor was not able to continue</td>
<td>stderr</td>
</tr>
<tr>
<td>P</td>
<td>Progress Messages</td>
<td>Information on progress of operations</td>
<td>stderr</td>
</tr>
</tbody>
</table>

8. **Message Text**: String with the text of the messages, no restrictions.

Examples of log messages are as follows:

- **2015-10-01T17:05:11.548200 wolga1 upas-l2 01.01.00 [012523]: [I]** Resources Initialized
- **2015-10-01T17:05:11.548200 wolga1 upas-l2 01.01.00 [012523]: [I]** XML configuration read
- **2015-10-01T17:05:11.548200 wolga1 upas-l2 01.01.00 [012523]: [P]** Start processing SO2 data

Size

N/A

Data Volume

N/A

Remarks

No physical file but `stdout/stderr` stream messages.
A. Appendix

Structure of the AUX_BGHCHO file in NRTI case (the same structure is present in OFFL case too).

```netcdf
// global attributes:
:Conventions = "CF-1.7" ;
:institution = "DLR" ;
:title = "TROPOMI/S5P Auxiliary background correction HCHO" ;
:time_reference = "20080807T000000" ;
:time_coverage_start = "20080807T010642" ;
:time_coverage_end = "20080808T234247" ;
:orbit = 9339 ;
:processor_version = "001100" ;
:revision_control_identifier = "2452" ;
:creation_time = "20161112T152603" ;
:earthshine_reference_valid = "true" ;

group: PRODUCT {

dimensions:
  polynomial_coefficients = 17 ;
  detector_rows = 450 ;
  wavelengths = 9000 ;

variables:
  float offsets(detector_rows ) ;
    offsets:_FillValue = 9.96921e+36f ;
  float polynomial_coefficients(polynomial_coefficients ) ;
    polynomial_coefficients:_FillValue = 9.96921e+36f ;
    polynomial_coefficients:units = "1" ;
  float earthshine_reference_wavelength(wavelengths ) ;
    earthshine_reference_wavelength:_FillValue = 9.96921e+36f ;
    earthshine_reference_wavelength:units = "nm" ;
  float earthshine_reference_radiance(detector_rows, wavelengths ) ;
    earthshine_reference_radiance:_FillValue = 9.96921e+36f ;
    earthshine_reference_radiance:units = "mol.m^-2.nm^-1.szr^-1.s^-1" ;

int detector_rows(detector_rows ) ;
  detector_rows:units = "1" ;
  detector_rows:long_name = "detector_rows dimension index" ;

int wavelengths(wavelengths ) ;
  wavelengths:units = "1" ;
  wavelengths:long_name = "wavelengths dimension index" ;

// group attributes:
  :valid_latitude_start = -57.5 ;
  :valid_latitude_end = 87.5 ; } // group PRODUCT

// group METADATA {

// group attributes:
  :ProductShortName = "AUX_BGHCHO" ;
  :input_orbits_l2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366 ;
```
B. Appendix

Structure of the AUX_BGSO2 file in NRTI case (the same structure is present in OFFL case too).

```plaintext
netcdf S5P_NRTI_AUX_BGSO2__20080807T010642_20080808T234247_20161112T160046{

// global attributes:
:Conventions = "CF-1.7";
:institution = "DLR";
:title = "TROPOMI/S5P Auxiliary background correction SO2";
:time_reference = "20080807T000000";
:time_coverage_start = "20080807T010642";
:time_coverage_end = "20080808T234247";
:orbit = 9339;
:processor_version = "001100";
:revision_control_identifier = "2452";
:creation_time = "20161112T160046";
:earthshine_reference_valid = "true";

group: PRODUCT {

dimensions:
  lat_grid = 36;
  o3_grid = 52;
  detector_rows = 450;
  wavelengths = 9000;

variables:
  float o3_grid(o3_grid);
    o3_grid:FILLVALUE = 9.96921e+36f;
    o3_grid:UNITS = "DU";

  float lat_grid(lat_grid);
    lat_grid:FILLVALUE = 9.96921e+36f;
    lat_grid:UNITS = "degrees_north";

  float window1_north(o3_grid, detector_rows);
    window1_north:FILLVALUE = 9.96921e+36f;
    window1_north:UNITS = "mol m^-2";

  float window1_south(o3_grid, detector_rows);
    window1_south:FILLVALUE = 9.96921e+36f;
    window1_south:UNITS = "mol m^-2";

  float window2(lat_grid, detector_rows);
    window2:FILLVALUE = 9.96921e+36f;
    window2:UNITS = "mol m^-2";

  float window3(lat_grid, detector_rows);
    window3:FILLVALUE = 9.96921e+36f;
    window3:UNITS = "mol m^-2";

  float earthshine_reference_wavelength(wavelengths);
    earthshine_reference_wavelength:FILLVALUE = 9.96921e+36f;
    earthshine_reference_wavelength:UNITS = "nm";

  float earthshine_reference_radiance(detector_rows, wavelengths);
    earthshine_reference_radiance:FILLVALUE = 9.96921e+36f;
    earthshine_reference_radiance:UNITS = "mol.m^-2.nm^-1.sr^-1.s^-1";

  int detector_rows(detector_rows);
    detector_rows:UNITS = "1";
    detector_rows:LONG_NAME = "detector_rows dimension index";

  int wavelengths(wavelengths);
    wavelengths:UNITS = "1";
}
```
wavelengths:long_name = "wavelengths dimension index";
} // group attributes:

:ProductShortName = "AUX_BGSO2";
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;
:input_orbits_L2 = 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9366;

Sentinel-5 Precursor Level 2 UPAS Processor

Input / Output Definition Document

- Restricted: Project Internal -

ID
S5P-L2-DLR-IODD-3002

Issue
3.4.0

Date
2019-02-20

Page
55 of 55

004548_20080808T014500_09353_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09354/S5P_TEST_L1B_RA_BD3_20080808T022712_20080808T032624_09354_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09355/S5P_TEST_L1B_RA_BD3_20080808T040836_20080808T050748_09355_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09356/S5P_TEST_L1B_RA_BD3_20080808T054954_20080808T064906_09356_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09357/S5P_TEST_L1B_RA_BD3_20080808T091242_20080808T103412_09357_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09358/S5P_TEST_L1B_RA_BD3_20080808T105724_20080808T115312_09358_02_010000_20161104T143525.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09359/S5P_TEST_L1B_RA_BD3_20080808T123524_20080808T133441_09359_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09360/S5P_TEST_L1B_RA_BD3_20080808T141647_20080808T151559_09360_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09361/S5P_TEST_L1B_RA_BD3_20080808T155805_20080808T165717_09361_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09362/S5P_TEST_L1B_RA_BD3_20080808T173929_20080808T183841_09362_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09363/S5P_TEST_L1B_RA_BD3_20080808T192053_20080808T202005_09363_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09364/S5P_TEST_L1B_RA_BD3_20080808T210211_20080808T220123_09364_02_010000_20161104T145005.nc
/home/gdp/data/s5p/aux_dynamic/L1B_XXXXXX/converted_gome2a_l1b/2008/08/09365/S5P_TEST_L1B_RA_BD3_20080808T224335_20080808T234247_09365_02_010000_20161104T145005.nc